
Adding records to Alloy⋆

Julien Brunel1,2, David Chemouil1,2, Alcino Cunha3,4[0000−0002−2714−8027], and
Nuno Macedo3,5[0000−0002−4817−948X]

1 ONERA DTIS, Toulouse, France
2 Université fédérale de Toulouse, Toulouse, France

3 INESC TEC, Porto, Portugal
4 University of Minho, Braga, Portugal

5 Faculty of Engineering of the University of Porto, Porto, Portugal

Abstract. Records are a composite data type available in most pro-
gramming and specification languages, but they are not natively sup-
ported by Alloy. As a consequence, users often find themselves having
to simulate records in ad hoc ways, a strategy that is error prone and
often encumbers the analysis procedures. This paper proposes a con-
servative extension to the Alloy language to support record signatures.
Uniqueness and completeness is imposed on the atoms of such signatures,
while still supporting Alloy’s flexible signature hierarchy. The Analyzer
has been extended to internally expand such record signatures as partial
knowledge for the solving procedure. Evaluation shows that the proposed
approach is more efficient than commonly used idioms.

Keywords: Alloy · Formal specification · Model checking

1 Introduction

Records (or structs) are a composite data type, available in most programming
and specification languages, that represent n-ary Cartesian products together
with named projections (a.k.a. fields). The Alloy language [3], however, does
not support such composite types; only sets and flat n-ary relations can be
modeled. Users often simulate a record type using a signature and associated
fields, and enforcing two constraints: i) completeness6: there is a record atom
for each possible combination of field values, so that every record is always
available; and ii) uniqueness: each record is uniquely represented by a single
atom, so that equality between similar records holds. This manual encoding is
however cumbersome, error-prone and difficult to maintain. This paper proposes
to extend Alloy with a new struct signature modifier to improve the support
for records. Hierarchies of record signatures can also be defined. This extension
⋆ This work is supported by the research project CONCORDE of the Defense Innova-

tion Agency (AID) of the French Ministry of Defense (2019650090004707501), and
by National Funds through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia within project EXPL/CCI-COM/1637/2021.

6 A particular case of generator axiom [3].

2 J. Brunel and D. Chemouil and A. Cunha and N. Macedo

1 sig ValueA, ValueB {}
2 var sig Id {}
3 sig Node { succ : set Node, var inbox : set Msg }
4 struct sig Msg { var id : one Id, pl : lone Payload }
5 abstract struct sig Payload { from : one Node }
6 struct sig PayloadA extends Payload { val : one ValueA }
7 struct sig PayloadB extends Payload { val : one ValueB }
8 . . .
9 fact trace { always some m:Msg,n:Node | send[n,m] or process[n,m] }

10 check { safety } for 3 but 10 steps

Fig. 1. Message-passing protocol with the struct extension

is backed by a direct translation from the Alloy Analyzer to the underlying
Pardinus model finder [8,5]. The Alloy visualizer is also adapted accordingly to
ease the interpretation of instances with records.

2 Motivating example

2.1 Example with the proposed extension

Consider, for instance, a model of an abstract message-passing protocol where
each message is comprised of an internal identifier and of an optional payload
made of the identifier of the sender node and some value that can be of different
types. During analysis, we expect the solvers to consider domains with different
sets of identifiers, nodes and values, but be able to refer to all possible messages.

A possible encoding in Alloy using the proposed extension is shown in Fig. 2.
A record signature Msg (l. 4) represents the available messages, composed of a
mandatory Id and an optional Payload with additional information. Payload
(l. 5) is also a record signature with the identifier of the sender node (here
abstracted by referring directly to the Node), but is declared as abstract, so
that it can be extended by messages containing values of different types, here just
denoted by PayloadA (l. 6) and PayloadB (l. 7) pointing to ValueA and ValueB
elements, respectively. Signatures marked with struct, and their fields, can then
be used as any plain signature in the rest of the model, as in the inbox of nodes
(l. 3) or in the fact trace (l. 9) that controls the evolution of the protocol in
a typical Alloy style. During analysis, all plain signatures take arbitrary values
within the specified scope, as in plain Alloy. Record signatures are considered to
be complete, containing all possible combinations of values within the universe
of discourse, and the user is not expected to control their scope. For instance,
the check safety command (l. 10) imposes a maximum scope of 3 for the plain
signatures. In a state that happens to have 3 atoms of each plain signature,
this would result in 9 PayloadA atoms, 9 PayloadB atoms, and 57 Msg atoms.
Note that the set of available identifiers is mutable during the execution of the
protocol (l. 2): the content of record signatures may then change in each state.

Adding records to Alloy 3

1 // same signatures as in Fig.1, but without the struct keyword
2 . . .
3 pred unique {
4 always {
5 all disj m1,m2:Msg | m1.id ̸= m2.id or m1.pl ̸= m2.pl }
6 all disj p1,p2:PayloadA | p1.from ̸= p2.from or p1.val ̸= p2.val
7 . . . } }
8 pred complete {
9 always {

10 all n:Id,p:Payload | some m:Msg | m.id = n and m.pl = p
11 all n:Id | some m:Msg | m.id = n and no m.pl
12 . . . } }
13 check { (unique and complete) implies safety }
14 for 3 but 57 Msg, 10 steps

Fig. 2. Message-passing protocol in plain Alloy

Notice in passing that this semantics for record is also well-suited when using
the popular trace exploration features7 of Alloy: record signatures have a single
possible valuation, so when exploring different configurations of the protocol, the
user will not be encumbered by solutions that vary on available messages and
actually represent the same configuration.

Evaluation, in Section 4, shows that despite increasing the size of the domain,
our encoding is in fact more efficient than the typical ad hoc solutions employed
at the Alloy level.

2.2 Example in plain Alloy

When modeling a system that handles record types, such as the example from
Fig. 1, Alloy users would probably employ a similar structure but without the
struct annotations, as depicted in Fig. 2. The first consequence of this is that
records are no longer unique, and thus equality between atoms is not equivalent
to equality of records. This can be forced by an additional constraint, such as
unique (l. 3). The second consequence is that the user has to reason about
scopes for records. To force every record to exist, one can define a constraint
such as complete (l. 7) and set the scope of records to the maximum possible
size, as in the check in l. 11. Notice how exact scopes on records cannot be
enforced because the scope of the other signatures is also non-exact.

Remark that an alternative to a complete encoding is to carefully reason
about the need for records during analysis, and perhaps end up with a tighter
scope. For instance, if a protocol exchanges at most one message at each step, it
will only ever require as many messages as steps, so the analysis could limit the
scope of Msg to 10 (and remove the complete premise). Note, however, this leads

7 Those allow to explore other static configurations, or initial states, or traces [1].

4 J. Brunel and D. Chemouil and A. Cunha and N. Macedo

to cumbersome scenario exploration, since iterating over different configurations
may just change the set of available messages.

Finally, a less flexible encoding than that of Fig. 2 is not to declare signatures
standing for records but to use Alloy n-ary fields to represent them. For exam-
ple, Payload would be replaced by (Node → ValueA) + (Node → ValueB).
However, the modeling of fields is cumbersome in this approach (especially when
lone fields and hierarchies of records are allowed) and, more importantly, Kod-
kod relations corresponding to records are, again, not exact.

3 Introducing Records

3.1 Overview and Syntax

Records are specified using a new struct keyword applied as a signature modi-
fier. The fields of a record type must be partial (resp. total) functions, i.e. they
must be of arity 2 and have multiplicity lone (resp. one); they can be of any
type excluding circular dependencies; and they may be declared mutable. Like
plain signatures, records can be arranged in a tree-shaped record-type hierarchy,
using the extends keyword, and they can be declared as abstract. A plain
signature can also be declared as a subset of a record signature using the in
keyword. Multiplicity constraints and bounds cannot be imposed on record sig-
natures as their scope is automatically computed. Finally, a record signature can
be referenced as any plain signature in the rest of the model.

3.2 Encoding and Semantics

Our extension relies on a specific encoding of records in Pardinus [5] (an extension
of Kodkod [8]). Notice that in Kodkod, relations (incl. sets) are declared as taking
any value between two sets: given a relation, the lower bound represents tuples
that must exist in all valuations while the upper one represents those that may
exist. When these are equal, the relation is said to be exact. The latter are
important for performance because their value is computed before resolution.
However, exactness of arbitrary relations cannot be specified in Alloy itself.

Our first key idea is then, for every concrete record signature, to translate
it into an exact constant set of fresh atoms in bijection with the set of all com-
binations of upper bounds of its fields (i.e. some combinations may not exist in
some states). Uniqueness and completeness are thus ensured by definition. The
function rc computes the said set of records:

at(f: one R) = rc(R) if R is a struct, up(R) otherwise
at(f: lone R) = at(f: one R)∪ {NOTHING}
rc(abstract struct sig R . . . { . . . }) =

⋃
rc(children(R))

rc(struct sig R . . . { . . . }) =
⋃

rc(children(R))∪π1(bij(
∏

at(fields(R))))

Here, up returns the upper bound of a plain signature as in regular Alloy, and
at returns atoms corresponding to a field; NOTHING is a distinct, dummy atom

Adding records to Alloy 5

representing the empty assignment; fields yields all fields of a struct, includ-
ing inherited ones; children returns the immediate children of a struct; and bij
returns a set of fresh record atoms in bijection with its argument, concatenated
with the argument itself (then π1 returns the set of record atoms itself). Recur-
sion is forbidden in record hierarchies so rc is well defined. Finally, mutability of
fields does not change this computation. We also generate an exact binary rela-
tion, for every field, projecting every computed record atom to the corresponding
field atom (we can retrieve the projections as bij keeps track of record atoms
and their originating field values). Applying the function on Fig. 1, we get the
following Pardinus declarations:

// Plain signatures yield sets given with lower, upper bounds:
Node : {}, {(N0),(N1),(N2)} // low = {}, up = {(N0),(N1),(N2)}
ValueA : {}, {(VA0),(VA1),(VA2)}
var Id : {}, {(I0),(I1),(I2)}
// ... while records yield exact, pre-computed sets:
PayloadA = π1({(PA0,N0,VA0),. . .,(PA8,N2,VA2)})

= {(PA0),. . .,(PA8)} // similarly for PayloadB
Payload = rc(PayloadA)∪ rc(PayloadB)

= {(PA0),. . .,(PA8),(PB0),. . .,(PB8)}
Msg = π1(bij(up(Id)× (rc(Payload)∪ {NOTHING}})))

= {(M0),. . .,(M56)}
// ... and exact, pre-computed projections (for fields):
val = {(PA0,VA0),(PA1,VA1),(PA2,VA2),(PA3,VA0),. . .,(PB8,VA2)}
id = {(M0,I0),(M1,I1),(M2,I2),(M3,I0),. . .,(M56,I2)}
. . .

As explained above, these exact sets represent the upper-bound of the record
signatures but not their actual values, since field types are not necessarily exact
or may change in some states. Our second key idea is therefore that, whenever a
call to a record signature or one of its fields is made in the rest of the model, it
must be filtered to exclude records that do not exist in the universe. Moreover,
NOTHING values must also be filtered out to obtain the empty assignment. For a
record signature R, this is done by identifying which of its fields are defined at
each state, using the inverse image of the corresponding projection, and inter-
secting them with R. Similarly, fields are filtered w.r.t. the existing records on
their domain and codomain. For instance, here, some of the replacements are:

Msg ⇝ Msg & id.Id & pl.(PayloadA+PayloadB+NOTHING)
PayloadA ⇝ PayloadA & from.Node & val.ValueA
pl ⇝ pl & (Msg & id.Id & pl.(PayloadA+PayloadB+NOTHING))

→ ((PayloadA & from.Node & val.ValueA) +
(PayloadB & from.Node & val.ValueB))

from ⇝ from & ((PayloadA & from.Node & val.ValueA) +
(PayloadB & from.Node & val.ValueB)) → Node

Notice this also works for mutable fields (like id), since the filter is always
evaluated in the current state. Finally, all these filter expressions are simplified

6 J. Brunel and D. Chemouil and A. Cunha and N. Macedo

Fig. 3. Visualization of instances with records

if the binding expression can be shown to be exact. For instance, if the scope of
Node is set exactly, we know that all possible node atoms are always present.

3.3 Visualization and Iteration

The Alloy visualizer has been adapted to identify record signatures: only filtered
records are shown, they are represented with angle brackets, and plain fields
are automatically shown as labels. Figure 3 shows an instance of the example
from Fig. 1 in the visualizer. Also, all scenario exploration features keep their
expected behavior. Note that since struct relations are exactly bound, scenario
exploration is not hindered by alternative scenarios where only the set of avail-
able messages changes (although, of course, they will change if the signatures
they depend on also change).

4 Evaluation

This section evaluates whether the performance of the struct encoding is fea-
sible, particularly when compared with possible alternative approaches.

An extension previously proposed by Montaghami and Rayside [7] tried to
address some of these issues. A signature modifier uniq is used to internally
introduce generator axioms. uniq signatures are however restricted to have field
types that are exactly bound, which is limiting since in Alloy we expect to explore
alternative configurations. A staged approach is then used to first solve uniq sig-
natures, which are passed as partial instances for the remaining problem. Two
strategies are proposed to find the configuration: one cannot be applied when
there are multiple configurations, the other requires solving the model for all
possible configurations. Such a technique has been proposed in [6], where prob-
lems are decomposed between the static and mutable parts, and configurations
analysed in parallel.

Table 1 summarizes the results of our evaluation for two message-passing
protocols — the Paxos [4] consensus protocol and an Echo [2] protocol to form a
spanning tree in a network8 — where messages are seen as records. We considered
two different unsatisfiable check commands for each model. Each entry shows
8 The extended version of the Analyzer and all the models are available https://github.

com/haslab/Electrum2/releases/tag/records-beta.

https://github.com/haslab/Electrum2/releases/tag/records-beta
https://github.com/haslab/Electrum2/releases/tag/records-beta

Adding records to Alloy 7

Table 1. Evaluation of Paxos and Echo, in seconds, best time in bold

model cmd scp msg stp AU AC DU DC R G

Paxos

ChosenValue 3 183 10 124 TO TO TO 357 0.3
ChosenValue 3 183 11 633 TO TO TO 527 1.3
ChosenValue 3 183 12 TO TO TO TO 1054 –

OneVote 3 183 7 34 TO TO TO 266 0.1
OneVote 3 183 8 321 TO TO TO 224 1.4
OneVote 3 183 9 2345 TO TO TO 231 10.1

Echo

SpanningTree 5 10 10 1172 322 TO 262 4 13.4
SpanningTree 5 10 11 2523 945 TO 508 11 5.5
SpanningTree 5 10 12 TO 1651 TO 1023 33 2.8

Finish 5 10 9 745 219 TO 1798 29 7.5
Finish 5 10 10 2679 314 TO 2815 38 8.3
Finish 5 10 11 TO 405 TO TO 59 6.8

the command executed (cmd), the default scope (scp), the maximum number
of distinct messages (msg), and the steps scope (stp). Commands were run in a
2.3 GHz Intel 8th-gen Core i5 with 16 GB RAM with Glucose as the selected
SAT solver, and time-out was set to 1 hour. The results struct extension are
reported as R, with G being the relative gain to the best other approach. We also
developed equivalent plain Alloy versions, enforcing uniqueness and completeness
of records (AC), and with as many messages as steps (AU). To compare with
a stage approach, we also analyzed those same models with the decomposed
parallel strategy from [6] (DU and DC).

Evaluation showed that for R, although the solving stage is faster, there is
an overhead during translation of the Alloy model to SAT (not shown in the
table). Nonetheless, the approach still pays off, outperforming the plain Alloy
analyzes as the number of steps increases. Compared with AC , the approach
with fine-tuned scope AU performs better in Paxos than in Echo, which has a
smaller number of messages. Regarding the decomposed strategy [6] with com-
plete scopes DC , it occasionally outperforms the regular Alloy analyses but is
still worse than our approach; the decomposed strategy with incomplete records
DU always performs worse than the others for these commands.

5 Conclusion

We have implemented an extension of Alloy with records that enables a natural
specification and has better performance than usual approaches in our experi-
ments. In the future, we plan to evaluate bigger case studies and to assess the
performance of an extension to more complex field types (sets or sequences).

References

1. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: 5th Workshop on Formal Integrated Development Envi-

8 J. Brunel and D. Chemouil and A. Cunha and N. Macedo

ronment. Porto, Portugal (Oct 2019)
2. Chang, E.J.H.: Echo algorithms: Depth parallel operations on general graphs. IEEE

Trans. Software Eng. 8(4), 391–401 (1982)
3. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,

revised edn. (2016)
4. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
5. Macedo, N., Brunel, J., Chemouil, D., Cunha, A.: Pardinus: A temporal relational

model finder. J. Autom. Reason. 66(4), 861–904 (2022)
6. Macedo, N., Cunha, A., Pessoa, E.: Exploiting partial knowledge for efficient model

analysis. In: ATVA. LNCS, vol. 10482, pp. 344–362. Springer (2017)
7. Montaghami, V., Rayside, D.: Staged evaluation of partial instances in a relational

model finder. In: ABZ. LNCS, vol. 8477, pp. 318–323. Springer (2014)
8. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS. LNCS,

vol. 4424, pp. 632–647. Springer (2007)

	Adding records to Alloy

