
Task Model Design and Analysis with Alloy⋆

Alcino Cunha1,2[0000−0002−2714−8027], Nuno Macedo1,3[0000−0002−4817−948X],
and Eunsuk Kang4[0000−0001−7891−6885]

1 INESC TEC, Porto, Portugal
2 University of Minho, Braga, Portugal

3 Faculty of Engineering of the University of Porto, Porto, Portugal
4 Carnegie Mellon University, Pittsburgh, USA

Abstract. This paper describes a methodology for task model design
and analysis using the Alloy Analyzer, a formal, declarative modeling
tool. Our methodology leverages (1) a formalization of the HAMSTERS
task modeling notation in Alloy and (2) a method for encoding a concrete
task model and compose it with a model of the interactive system. The
Analyzer then automatically verifies the overall model against desired
properties, revealing counter-examples (if any) in terms of interaction
scenarios between the operator and the system. In addition, we demon-
strate how Alloy can be used to encode various types of operator errors
(e.g., inserting or omitting an action) into the base HAMSTERS model
and generate erroneous interaction scenarios. Our methodology is ap-
plied to a task model describing the interaction of a traffic air controller
with a semi-autonomous Arrival MANager (AMAN) planning tool.

Keywords: Task models · HAMSTERS · Interactive system analysis ·
Alloy · Air traffic control · Arrival manager

1 Introduction

Task models are systematic approaches to describing the activities of a human
operator in an interactive computer system. Task models can be used to ar-
ticulate the operator’s goals and means to achieve them, evaluate the usability
of an interface, and reason about the impact of operator errors on the system.
In safety-critical domains, such as aviation systems and medical devices, where
safety failures have been attributed to interaction design [21], formal methods
can play an important role in rigorously specifying and verifying task models
against desirable interaction properties.

This paper proposes a methodology for specifying and analyzing task models
in Alloy, a declarative modeling language based on first-order relational logic [11].
We demonstrate how Alloy can be used to formally specify HAMSTERS [2,15],

⋆ The work of the first two authors is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within
project LA/P/0063/2020. The last author was supported in part by the National
Science Foundation award CCF-2144860.



2 A. Cunha and N. Macedo and E. Kang

a notation for hierarchical task modeling, and analyze various properties about
task models using the Alloy Analyzer. Our modeling approach consists of (1) a
generic model encoding the semantics of HAMSTERS, (2) instantiation of an
application-specific task model on top of this semantic model, and (3) simulation
and verification of interaction properties, which, if violated, yield a counter-
example that is visualized as a sample interaction scenario. In addition, we show
how the basic HAMSTERS model can be extended with a generic error model
that captures various types of operator errors (such as inserting or omitting an
action), to enable analysis of a task model under erroneous interaction scenarios.

We demonstrate our methodology through the application to a case study
on an Arrival MANger (AMAN) tool, an interactive aircraft traffic control soft-
ware [17]. We have specified a part of the task model for AMAN and checked
interaction properties that are important for the traffic controller to successfully
carry out their tasks, such as the presence of appropriate visual feedback and
deadlock-freeness. In the process, we have identified several flaws in the inter-
action design as well as the system requirements that are given in the AMAN
reference documentation, for some of which we suggest a fix.

As far as we are aware, our work is the first to formalize and analyze task
models using Alloy. Although the focus of this paper is on AMAN, our approach
is general and should be applicable to other task models in HAMSTERS.

This paper is organized as follows. We begin by introducing our formalization
of the HAMSTERS notation in Alloy (Section 2). We then describe an instantia-
tion of the semantic model for specifying the task model for the AMAN tool and
the analysis of its interaction properties (Sections 3 and 4). Section 5 explores
previous work related to our approach. We conclude with a discussion of the
limitations of our approach as well as future work (Section 6).

2 Formalizing HAMSTERS with Alloy

This section presents an Alloy formalization of a subset of the HAMSTERS task
model notation, addressing both its structural and behavioral semantics, and a
general technique to compose task models with a formal model of the interactive
system. Lastly, an extension to model erroneous user behavior is presented.

Like most task modeling notations, HAMSTERS allows the hierarchical de-
composition of tasks in a tree-like structure. A key feature of HAMSTERS is that
operators are also nodes that define the temporal relationship between sub-tasks,
while in the popular ConcurTaskTrees (CTT) notation [19,18] such operators are
defined in arcs between the sibling sub-tasks, which can be confusing when dif-
ferent operators are used to decompose a task. Composite tasks have exactly one
such child operator node, which can be further decomposed in operator nodes.
To simplify our formalization, we will assume that task and operator nodes are
always interleaved. This does not limit the expressiveness, since phantom tasks
can always be added when operator nodes have children operators, as explained
in [2]. This allows us to merge composite tasks with the corresponding temporal



Task Model Design and Analysis with Alloy 3

abstract sig Task {}
abstract sig Atomic extends Task {}
abstract sig Composite extends Task { subtasks : seq Task }
abstract sig Disable, Suspend, Concurrent, Choice, Sequence

extends Composite {}
one sig Root in Task {}
sig Iterative, Optional, Input in Task {}
// Derived relations
fun parent : Task → Task { ... }
fun succ : Task → Task { ... }
fact WellFormed {

// The task model forms a tree
no Root.parent
all t : Task - Root | one t.parent
all t : Task | t not in t.^parent
// Composite tasks must have at least
// two (non-duplicate) sub-tasks
all t : Composite | not lone elems[t.subtasks] and

not hasDups[t.subtasks]
// Choice, disable, and suspend tasks
// cannot have optional sub-tasks
all t : Choice + Disable + Suspend | no parent.t & Optional
...

}

Fig. 1. HAMSTERS structural semantics

operator, and to view a HAMSTERS model as a tree containing only task nodes,
composite in branch nodes and atomic in the leaves.

2.1 Structural semantics

Figure 1 presents an excerpt of the Alloy formalization of the structural seman-
tics of HAMSTERS. In Alloy, signatures are used to declare entities of the do-
main. Furthermore, its type system supports inheritance: signatures can extend
other signatures or be declared abstract, when they cannot contain elements out-
side one of their extensions. It is also possible to declare inclusion signatures, ar-
bitrary subsets of the parent signature that, unlike extension signatures, are not
required to be disjoint from their siblings. Here we declare an abstract Task signa-
ture with two extensions, containing the Atomic and Composite tasks. The latter
is further extended by the five HAMSTERS temporal relationships supported
in our formalization: Disable, Suspend, Concurrent, Choice, and Sequence5. All

5 This is known as Enable in HAMSTERS, but to avoid confusion with the concept of
enabled in the proposed behavioral semantics, we opted to rename it as Sequence.



4 A. Cunha and N. Macedo and E. Kang

these task types are declared as abstract and will later be extended with sig-
natures denoting the concrete tasks in a specific task model. Finally, a subset
singleton signature is declared to denote the Root task (in Alloy it is possible
to restrict the cardinality of a signature with a multiplicity constraint, in this
case one), as well as two subset signatures marking the Iterative and Optional

tasks. HAMSTERS further classifies tasks according to their nature (for exam-
ple, distinguishing User, Interactive, and System tasks), which do not affect the
behavioral semantics of the model. In our formalization, we identify the Inter-
active user Input tasks only, because they will be relevant to some requirements
and when considering erroneous execution.

Inside an Alloy signature, it is possible to declare fields, relations that map
its elements to other entities in the domain. Field subtasks of the Composite

signature relates each composite task with its sub-tasks. Since for some oper-
ators, namely Sequence, the order of the sub-tasks is relevant, each composite
task cannot be related to an arbitrary set of sub-tasks. Recent versions of Alloy
allow the declaration of sequences with bounded length with the seq keyword.
Sequences are modeled as mappings from integer indexes to the respective el-
ements, and come equipped with several pre-defined functions and predicates
(e.g., elems that determines the set of elements in a sequence, or hasDups that
checks if a sequence contains duplicate elements). In Alloy, parametrized func-
tions (keyword fun) and predicates (keyword pred) can also be declared to define
reusable expressions and formulas, respectively. Functions without parameters
can be used to define derived constant expressions. In Fig. 1 two derived re-
lations are declared (definitions omitted): parent, that relates a task with its
parent task, and succ, that relates a task with its next sibling task.

Facts can be used to impose assumptions in an Alloy model. These are speci-
fied using Relational Logic, an extension of First-Order Logic with operators that
simplify the definition of derived (relational) expressions. The most used oper-
ator is the dot join composition (.), which allows the navigation through fields
to obtain related elements. For example, given task t, the set of its parent tasks
is represented by t.parent and the set of its children sub-tasks by parent.t. Set
operators can also be used, namely intersection (&), union (+), and difference (-).
Atomic formulas in Alloy are typically inclusion or multiplicity tests. Operator
in checks if an expression is a subset or equal to another one, and the available
multiplicity checks are no (empty), lone (at most one element), some (at least
one element), or one (exactly one element). Atomic formulas can be combined
with the standard Boolean operators and quantifiers.

The WellFormed fact shown in Fig. 1 ensures that the task model forms a
tree. The first constraint forces the root task to have no parents, specified as
no Root.parent. The next constraint quantifies over Task - Root to ensure that
non-root tasks have exactly one parent. The next one uses the transitive closure
operator (^) to ensure that the parent relationship is acyclic. Although the static
semantics of HAMSTERS is not entirely clear about additional restrictions to
the structure of task models, we included several additional ones in WellFormed,
mostly based on similar restrictions that exist in CTT. For example, we require



Task Model Design and Analysis with Alloy 5

composite tasks to have at least two (non-duplicate) sub-tasks, and only allow
Optional sub-tasks in Concurrent and Sequence composite tasks.

2.2 Behavioral semantics

Since we found no formal description of the HAMSTERS behavioral semantics
in the literature, we mainly based our formalization on our experience with the
available task model simulators. The most recent version 6 of Alloy [12,5] added
explicit support for behavioral specifications, allowing signatures and fields to
be declared as mutable (with keyword var) and adding Linear Temporal Logic
operators such as always or eventually.

Figure 2 presents an excerpt of the Alloy formalization of the behavioral
semantics of HAMSTERS. The complexity of the semantics is mainly due to
the fact that Iterative and sub-tasks of Suspend tasks (and consequently, their
sub-tasks) can be performed multiple times; and that suspending and disabling
tasks can interrupt other tasks at arbitrary points, the former allowing them to
eventually resume. We rely on five mutable subsets of Task to manage the status
of tasks in each state of the execution. We consider atomic tasks to execute
atomically, and register those already executed, and composite tasks to run
through several states as their sub-tasks are performed, and register the tasks
that are running. Both executed and finished tasks can be reset if repeatable.
Tasks that are enabled are those ready to execute (atomic) or run (composite).
Tasks that already finished executing/running are also registered, as well as
those that are done, those that have finished and are not repeatable.

The evolution of the set of executed atomic tasks is controlled by the first
two constraints in the Behavior fact. It starts empty and afterwards it is always
the case that either it does not change (no task is executed) or it changes ac-
cording to one of two possible events (specified in separate predicates): either
an enabled atomic task is executed and added to executed (note that executed’
denotes the value of executed in the next state), or an enabled and already fin-
ished repeatable task is reset and it and all its descendant tasks are no longer
considered to have been executed (the descendants are computed by applying
the reflexive transitive closure operator (*) to parent).

The value of the four remaining variable subsets is specified by constraints in
Behavior that define them by set comprehension, with many cases omitted due to
space limitations. Set enabled only contains tasks whose parent is also enabled,
and is further restricted according to the type of the task. For example, an
atomic task is only enabled if not yet done and a sub-task of a Choice composite
task is only enabled if none of its siblings is yet running. The running tasks are
those not yet done but that already started, that is, have some descendant task
that is already done. The set of finished tasks is again defined case-by-case. For
example, atomic tasks finish immediately when they execute, and Choice tasks
are considered to be finished when one of their sub-tasks is done. Finally done

tasks are those that are non-repeatable and that have already finished.
With this formalization of the behavioral semantics it is already possible to

check some general properties of task models or validate expected scenarios. In



6 A. Cunha and N. Macedo and E. Kang

var sig executed, enabled, running, finished, done in Task {}
pred execute [t : Atomic] { // Executing an atomic task

t in enabled and executed’ = executed + t }
pred reset [t : Task] { // Resetting a repeatable task

t in enabled & (finished - done)
executed’ = executed - *parent.t }

pred nop { executed’ = executed }
fact Behavior { no executed and always {
// Possible events affecting the executed tasks
nop or (some t : Atomic | execute[t]) or

(some t : Task | reset[t])
// The enabled tasks
enabled = { t : Task | { ...

// The parent is enabled and if atomic it cannot be done
t.parent in enabled and (t in Atomic implies t not in done)
// If inside a choice no sibling can be running
some t.parent & Choice implies

no (parent.(t.parent) - t) & running }}
// The running tasks that already started but are not yet done
running = { t : Task | t not in done and some ^parent.t & done }
// The tasks that finished executing
finished = { t : Task | { ...
// An atomic task is finished if it already executed
t in Atomic implies t in executed
// A choice task is finished if some sub-task is done
t in Choice implies some parent.t & done }}

// The non-repeatable tasks that already finished
done = { t : Task | t in finished - Iterative -

(parent.Suspend).succ }
} }

Fig. 2. HAMSTERS behavioral semantics

Alloy, run commands are used to ask for instances satisfying the specified as-
sumptions and any additional scenario-specific constraints, and check commands
to verify expected assertions. For decidability reasons, commands are bounded
by a user-defined scope that limits the maximum number of elements inside sig-
natures (3 by default) and the maximum number of transitions in the returned
instance traces (10 steps by default)6. For example, the following command,
dubbed Complete, generates a task model where the root task is eventually done.

run Complete { eventually Root in done } for 1 but 2 steps

6 In this paper we only use the bounded model checking engine of Alloy 6, but the
Analyzer also supports unbounded model checking if NuSMV or nuXmv are installed,
which is activated with the scope 1.. steps.



Task Model Design and Analysis with Alloy 7

The defined scope limits the search to task models with at most 1 task and runs
with 2 transitions, so the returned instance will be the smallest task model where
the goal can be completed as fast as possible, namely one with a single atomic
task that is immediately executed. We can also check that task models cannot
deadlock, in the sense that while the root goal task is not done, one of the two
events (execute an atomic task or reset a repeatable task) can still occur.

pred Deadlock {
no t : Atomic | t in enabled
no t : Task | t in enabled and t in finished - done }

check NoDeadlock {
always (Root not in done implies not Deadlock) } for 6 but 3 seq

Note that this assertion will be checked for traces with up to 10 transitions,
any possible task model with up to 6 tasks, and where each composite task has
at most 3 sub-tasks (due to the scope 3 on seq, the size of sequences that are
used to model the order of the sub-tasks), an enormous search space that takes
120s to verify with the SAT-based bounded model checking engine (with the
Glucose SAT solver) in a commodity 2.3 GHz Intel Core i5 with 16 GB RAM.
All commands in the paper were run on the same machine.

2.3 Composing concrete task models with system models

To verify properties of an interactive system where user actions are governed by
a task model it is necessary to formally specify the system model and compose
it with formal specification of the task model just presented. In Alloy, systems
are specified in a style similar to the one used above to control the evolution
of executed atomic tasks: mutable signatures and fields model the state of the
system, and a fact constrains their initial state and which events are possible
at each state. Events are typically specified in separate predicates, each with
three kinds of formulas: guards that specify when is the event enabled, effects
that specify which mutable structures change and how they change, and frame
conditions that specify which mutable structures do not change. Each atomic
task in the task model should have a corresponding event, and it is necessary to
ensure that the former is only enabled when the guard of the latter holds, and
that the execution of both is synchronized.

To support this composition, the Alloy HAMSTERS formalization was re-
fined, adding a mutable field to atomic tasks that will determine in which states
is the guard of the respective system event valid.

abstract sig Atomic extends Task { var guard : lone True }
one sig True {}

In every state of execution, field guard relates each atomic task with at most one
element of the singleton signature True. Since Alloy has no pre-defined Boolean
type this is a simple way to declare a Boolean mutable attribute: given a task
t, the guard of the respective event is enabled iff t.guard = True. When adding
specific tasks to the task model, the value of guard can be defined with a signature



8 A. Cunha and N. Macedo and E. Kang

fact, an assumption defined alongside a signature declaration, which is implicitly
universally quantified over all states. The specification of the value of the enabled
mutable signature in Fig. 2 must also be refined to consider an atomic task
enabled only when t not in done and t.guard = True.

Finally, to ensure the synchronization of the execution, a call to predicate
execute[t] should be included in the specification of the system event corre-
sponding to atomic task t. Since the guard will already be checked by this pred-
icate, the specification of the event needs only to specify the effects and frame
conditions. If an event can be triggered by multiple tasks, the call to execute

can be replaced by the disjunction of multiple calls.
Suppose, for example, that an interactive system consisted only of two atomic

tasks executed in sequence. Its specification would look as follows.

... // state declaration
one sig Goal extends Sequence {} { subtasks = 0→Task1 + 1→Task2 }
one sig Task1 extends Atomic {} { guard = True iff ... } // guard
one sig Task2 extends Atomic {} { guard = True iff ... } // guard
fact System {

... // initial state
always (event1 or event2) }

pred event1 {
execute[Task1]
... } // effects and frame

pred event2 {
execute[Task2]
... } // effects and frame

Notice in the signature fact of the Goal Sequence task that the order of the sub-
tasks is specified by stating which sequence index is mapped to each of them.

2.4 Adding erroneous behavior

In safety-critical interactive applications, it is often important to verify if ex-
pected properties still hold even in presence of user errors, i.e., interactions that
do not conform to the defined task model. We will focus on user errors while
executing Input tasks in Sequence, namely omission or duplication of required
input tasks or performing them in a different order, although the impact of other
kinds of errors could be explored with similar approaches. To account for user
errors, our formalization needs to be further refined. First a subset signature of
Atomic is added containing the Erroneous tasks, which in the WellFormed fact
are further restricted to be Input tasks whose parent is a Sequence task. A mu-
table field log is also added to the Sequence composite tasks to record the actual
sequence of tasks that was executed (which might differ from the sequence spec-
ified in subtasks due to user errors). This will allow us to later detect which
errors occurred in an execution.

sig Erroneous in Atomic {}
fact WellFormed { ...



Task Model Design and Analysis with Alloy 9

all t : Erroneous | t in Input and some t.parent & Sequence }
abstract sig Sequence extends Composite { var log : seq Task }

The formalization of the behavioral semantics also needs to be adapted to
allow user errors. In particular, the specification of enabled is changed to consider
an atomic erroneous task enabled even if already executed. The conjunct that
concerns atomic tasks is changed to the following:

t in Atomic implies
(t in Erroneous or t not in done) and t.guard = True

Likewise, the restrictions for a sub-task of a Sequence to be enabled (omitted in
Fig. 2) is relaxed to allow the execution of erroneous tasks out of order.

Finally, the specification of execute, reset, and nop is also changed to con-
sider their effect on the log mutable field. For example, reset should clear the
log of the reset task and all its descendant tasks and maintain the log of the
remaining sequence tasks.

pred reset [t : Task] {
...
all x : *parent.t | no x.log’
all x : Sequence - *parent.t | x.log’ = x.log }

3 The AMAN case study

In this section we will show how the presented HAMSTERS formalization and
system composition technique can be applied to a case study related to air traffic
control7, namely a semi-autonomous Arrival MANager (AMAN) [17].

3.1 Task model

In [17], the interaction of the air traffic controller (ATCo) with AMAN is de-
scribed by a HAMSTERS task model. This task model includes numerous per-
ceptive user tasks that have no direct impact on the interaction with the system,
so in this section we will consider a simplified version, presented in Fig. 3, that
includes mainly Interactive (both input and/or output) and System tasks. We
will not describe the graphical notation of HAMSTERS (see [15]) but we believe
it will be easy to grasp given the description bellow.

The ATCo task of managing the Landing Sequence (LS) can be suspended
every 10s by the AMAN autonomous activity, which is a sequence of 3 system
tasks where updated information about the planes is received by the radar and a
new LS is computed and displayed. In abstract terms an LS is an assignment of
planes to landing time slots, that respects some safety requirements concerning
the separation of planes. The current LS is displayed in a user interface that
7 The full HAMSTERS and AMAN Alloy models are available at https://github.
com/nmacedo/HAMSTERS-Alloy.

https://github.com/nmacedo/HAMSTERS-Alloy
https://github.com/nmacedo/HAMSTERS-Alloy


10 A. Cunha and N. Macedo and E. Kang

Fig. 3. Simplified AMAN task model (only Interactive and System tasks)

shows each plane as a label next to the assigned slot in a timeline. While moni-
toring the LS, the ATCo may concurrently modify the zoom level of this timeline,
meaning that only a prefix of the LS is shown at any time. The ATCo may also
modify the LS manually, select planes to put on hold, or block some time slots
where no plane can be assigned. Finally, this iterative (and interactive) activity
of managing the LS can be terminated at any time by the disabling stop task.

As explained in Section 2.3, formalizing a concrete task model in Alloy re-
quires declaring singleton extensions of the appropriate types, and for composite
tasks specifying the order of the respective sub-tasks. It is also necessary to
specify the Iterative, Optional, and Interactive Input tasks. Figure 4 presents a
snippet of this formalization for the AMAN.

3.2 Interactive system model

Since we are interested in exploring and analyzing design alternatives, our model
of the AMAN system will be purposely abstract, as desired in such an early
phase of the development so that the conducted analysis applies to many pos-
sible different implementations. The structures that characterize such abstract
view of the AMAN state are presented in Fig. 5. Two immutable signatures are
declared to represent the Planes and the different time Slots. The latter are
totally ordered using the pre-defined module util/ordering. Mutable field slot

represents the current LS, associating each plane to at most one time slot. Mu-
table field label represents the labels currently displayed on screen. Labels are
not explicitly modeled, so label directly associates slots with the plane shown in
the label. The state also includes six mutable subset signatures of Plane and/or



Task Model Design and Analysis with Alloy 11

one sig ManageSector extends Disable {} {
subtasks = 0→ManageLS + 1→StopManageLS }

one sig StopManageLS extends Atomic {}
one sig ManageLS extends Suspend {} {

subtasks = 0→ManageLandingSequenceLS +
1→AMANAutonomousActivity }

one sig AMANAutonomousActivity extends Sequence {} {
subtasks = 0→ReceiveRadarInformation +

1→ComputeLS + 2→DisplayLS }
one sig ReceiveRadarInformation, ComputeLS, DisplayLS

extends Atomic {}
...
fact { Iterative = ManageLS

Optional = ChangeZoom + PutAircraftOnHold +
ModifyLS + BlockTimeSlot

Input = ModifyLS + ModifyZoom + SelectAircraftLabel +
ClickHoldButton + SelectSlot }

Fig. 4. Alloy formalization of the AMAN task model

open util/ordering[Slot]
sig Plane { var slot : lone Slot }
sig Slot { var label : set Plane }
var sig radar in Plane {}
var sig displayed, blocked in Slot {}
one var sig zoom in Slot {}
var sig holding, selected in Plane+Slot {}

Fig. 5. An abstract view of the AMAN state

Slot: the planes currently detected by the radar; the slots in the timeline prefix
currently displayed; the blocked slots; the singleton selected zoom level, here
represented by the last slot of the timeline that should be displayed; the planes
that are holding and the slots where the label already displays the plane as
holding (note that there is always a delay between computing or modifying the
LS and updating the displayed information); and, finally, the slots or plane labels
currently selected (either to block or put on hold, respectively).

Given these state declarations we can define the guards that enable the exe-
cution of the atomic tasks. For example, we could enable ‘Stop Manage LS ’ to
occur only when there are no planes detected by the radar.

one sig StopManageLS extends Atomic {} { guard = True iff no radar }

Other atomic tasks that are guarded in our model are:

– ‘Modify Zoom’ requires that there are at least two time slots.



12 A. Cunha and N. Macedo and E. Kang

– ‘Select Aircraft Label ’ requires non-holding planes to be currently displayed.
– ‘Click Hold Button’ requires one plane label to be selected.
– ‘Modify LS ’ requires that there is some displayed plane label (to drag to a

different position in the LS) and at least one free non-blocked slot on display.
– ‘Select Slot ’ requires that some non-blocked slot is currently displayed.
– ‘Display Slot Locked ’ requires one slot to be selected.

To give another example of the formalization of such guards, consider the one
assigned to the ‘Modify LS ’ task.

some Slot.label and some displayed - Plane.slot - blocked

Finally the interactive system behavior should be formalized following the
methodology described in Section 2.3. For each atomic task one system event
should be specified, including a call to the execution of the respective task to
ensure the proper synchronization between the task and the system. The same
event may be associated to multiple tasks, which is the case of the two distinct
‘Display LS ’ tasks in the AMAN task model. To give an example of an event
specification consider the ‘Compute LS ’ System task.

pred computeLS {
execute[ComputeLS]
// effects
slot’.Slot = radar and no Plane.slot’ & blocked
all s : Slot | lone slot’.s
Plane <: holding’ = holding & radar
// frame conditions
radar’ = radar and label’ = label and ... }

Here we completely abstract the way the LS is computed, again leaving room for
many different implementations. The only restrictions imposed on the new value
of slot are that all planes detected by the radar are assigned a non-blocked
slot and that at most one plane is assigned to each slot. Holding planes that
are no longer detected by the radar are also removed from the holding set. All
remaining mutable relations keep their value.

4 Analysis of the AMAN design

Design analysis should include both validation and verification. Our validation
focused on exploring specific execution scenarios to rule out possible conflicts or
inconsistencies in the interactive system specification. Then, verification checked
some of the requirements listed in the case study documentation [17].

4.1 Scenario exploration

Alloy’s run commands can be passed arbitrary formulas as constraints that must
hold in the generated instances, which allows the user to loosely specify inter-
esting scenarios. For instance, to inspect a scenario where eventually a time slot
is displayed as holding, one could write the following command



Task Model Design and Analysis with Alloy 13

Scenario Description Steps Time
Complete Goal is completed 2 3.2
NotComplete Tasks keep running and goal is never completed 6 24.7
AllExecute All atomic tasks are executed at least once 15 82.8
SomeHolding Some plane label is displayed as holding 9 23.2
OmitError An input task is erroneously omitted 11 42.6
RepeatError An input task is erroneously repeated 4 7.1
ReorderError A sequence task is executed in the wrong order 12 47.2

Table 1. Generated scenarios, time in seconds

Fig. 6. Alloy theme for the AMAN case study in a state of SomeHolding

run SomeHolding {
no Erroneous and eventually (some Slot & holding)

} for 3 but 5 seq, 20 steps

which would present an AMAN execution trace with at most 20 states and at
most 3 planes and slots. For a more complex scenario, suppose that we wish to
inspect erroneous executions, identified through a finished Sequence task where
sub-tasks are missing in the log (seq/Int denotes the available seq indexes).

run OmitError { eventually (
some st : Sequence | st in finished
some i : seq/Int, x : Task | st.subtasks = insert[st.log,i,x])

} for 3 but 5 seq, 20 steps

Table 1 summarizes the tested scenarios, including the minimal number of
steps needed to generate them and the running time (in seconds). All commands
were run with the default scope of 3 except for 5 seq and 20 steps. The first 3
commands refer only to HAMSTERS concepts (such as completing the goal, as
shown in Section 2.2), and could be applied to other concrete task models.

Alloy depicts generated instances graphically, showing one transition of the
trace at a time (two panes, with the pre- and post-state). The user can then nav-
igate along the trace to inspect other states. To ease the visualization custom
themes can be defined. We developed such a theme for the AMAN model, and



14 A. Cunha and N. Macedo and E. Kang

Fig. 6 shows an advanced state of a trace returned by SomeHolding. The position
of the elements was manually positioned for better understanding (unfortunately
the Alloy visualizer does not ensure that arcs do not overlap). Concerning the
task model (left-hand side), tasks are colored according to their status: enabled
atomic tasks in yellow, running composite tasks in green, and done tasks in red.
Iterative and Optional tasks are marked with a label. Concerning the interactive
system (right-hand side), LS time slots are shown with circles, with those dis-
played in the screen colored gray. The selected zoom level is shown as a lozenge,
blocked slots as a double circle, and selected slots with an ‘X’ label. Planes are
shown as hexagons, colored yellow if detected by the radar and red if holding; if
the holding status is being displayed an ‘H’ is added to the plane label.

Similarly to simulators, the visualizer provides different scenario exploration
operations which allow the user to iterate through alternative traces that conform
to the executed command. For instance, the ‘New Config ’ operation searches for
an alternative static configuration (here, the existing planes and slots) and ‘New
Fork ’ for an alternative transition in the selected state (here, executing a different
task). These operations were used extensively during validation.

4.2 Requirement verification

After thorough validation, we verified some desirable properties. Note that our
approach focused on the analysis of the user interaction rather than an imple-
mentation of an AMAN system, so not all requirements from [17] are verifiable.

In the first phase we consider only interactions with the AMAN system that
conform to the task model (i.e., without user errors). We started by specifying
simple check commands that were expected to be false due to the delay be-
tween the tasks, such as whether holding planes are always within the radar
(HoldingInRadar) or whether planes in the LS are always shown in the screen
(LabelsInLS). Alloy indeed showed these to be false, providing counter-examples
that can be visualized and explored likewise the scenarios in Section 4.1.

Regarding the documented safety requirements [17], Req5 – stating that
labels cannot overlap in the LS – holds for our system (NoOverlap, specified
as all s : Slot | lone s.label). We faced some difficulties when formalizing
Req6 – that no planes can be moved to blocked slots. Although it seems to re-
strict the action of “moving a label”, we tried to interpret it as an invariant on the
state of the system. The AMAN described in [17] allows planes to be in blocked
slots until the next AMAN iteration executes. Thus, a simple interpretation of
Req6 (NoLabelsBlockedA, specified as no p : Plane | some label.p & blocked)
is obviously false. In fact, Req6 must state that the inconsistency is tem-
porary, and that the plane will eventually be moved from the blocked slot
(NoLabelsBlockedB):

always eventually (no p : Plane | some label.p & blocked)

This means that Req6 is a liveness property – eventually a desirable state will
be reached – that will be trivially false without imposing fairness constraints
– that the model cannot stutter indefinitely if there are tasks left to do. Our



Task Model Design and Analysis with Alloy 15

HAMSTERS formalization provides two predicates, WF and SF, that the user can
call to enforce weak and strong fairness on the execution of tasks, respectively,
according to standard semantics. For instance, WF states that atomic tasks cannot
be permanently enabled without being executed, and that Iterative tasks cannot
be permanently waiting to be reset for another iteration. For NoLabelsBlockedB

to hold, it suffices to enforce weak fairness, so that the AMAN autonomous
activity eventually updates the LS and recovers consistency.

Regarding interaction requirements [17], it is clear that not all task sequences
allowed by the task model are feasible in our formalized interactive system, as
seems to be required by Req14. It suffices to consider the pre-conditions on the
events of the composed system. Instead, we explored other properties related
to the availability of tasks. We were able to check that our AMAN task model
never deadlocks – it never reaches a state without enabled tasks and the root
goal still not completed (NoDeadlock). We were also able to check that whenever
a non-holding plane is being displayed, it will eventually be possible to select it,
another liveness property requiring strong fairness (SelectAvailable).

Lastly, for the automation requirements [17] we focused on Req9 – that all
inputs from the ATCo must have some graphical feedback. This can be formal-
ized as a liveness property (Feedback) such as

all t : Input | always (execute[t] implies eventually DisplayChanges)

where DisplayChanges tests whether there were any changes in the variables
related to the AMAN display. Interestingly, even when enforcing fairness, this
property does not hold. After inspecting the returned counter-example it became
clear why: if the ATCo selects a plane to put on hold but modifies the zoom level
before clicking the hold button, he may never get visual feedback about the plane
changing to the holding status. One may try to add an additional pre-condition
to ‘Click Hold Button’ to require the selected plane to be visible. This would
fix Feedback but introduce other problems: the non-visible plane cannot be un-
selected, breaking availability properties like SelectAvailable. We also tried to
change the interactive system by having ‘Click Hold Button’ automatically zoom
out to show the selected plane; but another counter-example is found where the
autonomous AMAN task starts, before the ATCo presses hold, that no longer
detects the plane in the radar and does not display it to the ATCo. The most di-
rect way we could envision to fix this issue requires several changes: enforcing the
pre-condition mentioned above on ‘Click Hold Button’; enforcing a pre-condition
on ‘Select Aircraft Label ’ to forbid the selection of planes already selected; and
breaking down ‘Put Aircraft On Hold ’ to not force every ‘Select Aircraft Label ’
to be followed by a ‘Click Hold Button’. This allows ‘Select Aircraft Label ’ to be
executed again to unselect a previously selected plane, finally guaranteeing that
all our assertions hold.

Table 2 summarizes the checked assertions, with the minimal number of steps
of the counter-examples for the invalid ones and the running time (in seconds).
All commands were run with the default scope of 3, 5 seq and 20 steps.

The last issue we addressed was the robustness of our system against ATCo
errors. To this purpose, we ran all check commands again but this time allowing



16 A. Cunha and N. Macedo and E. Kang

Assertion Description Steps Time
HoldingInRadar All holding planes are detected by the radar 8 19.2
LabelsInLS All the displayed labels are part of the LS 7 15.6
NoOverlap Labels should not overlap (Req5) unsat 114.6
NoLabelsBlockedA No labels in blocked slots (Req6) 7 15.6
NoLabelsBlockedB Labels will not stay in blocked slots (Req6) unsat 539.9
NoDeadlock The composed system does not deadlock (Req14) unsat 90.8
SelectAvailable Selecting planes to hold is always possible (Req14) unsat 567.6
Feedback Input tasks always have some feedback (Req9) 12 132.1

Table 2. Verified assertions (without erroneous tasks), time in seconds

erroneous tasks as described in Section 2.4. Interestingly, all commands that held
remain valid even in this scenario. This means that our very simple formalization
of an AMAN system is resistant to user errors, in the sense that an ATCo acting
outside the task model does not break the consistency of the system.

5 Related work

Despite our best attempts, we were unable to find a publicly available document
describing the formal semantics of HAMSTERS. We reverse-engineered the se-
mantics by interacting with the given HAMSTERS simulator and also referring
to the semantics of CTT [19,18], a predecessor to HAMSTERS, when appropri-
ate. In particular, our recursive definition to determine the enabled set of tasks
seems to be very similar to the recursive algorithm implemented in CTTE [16],
the most popular CTT design and simulation tool. Although we believe that our
formalization is reasonable, it is possible that it differs from what the designers
of the HAMSTERS notation intended; the outcome of our analysis is thus also
contingent on the fidelity of our model.

The composition (or coupling) of task models and system models, to show
the consistency of the prescribed interaction model, has been proposed before. In
particular, techniques have been proposed for the co-execution of HAMSTERS
task models with Petri Net system models [1] or with actual interactive ap-
plications [13]. These techniques allow only to validate the consistency of the
coupled system, while our Alloy-based technique can also be used to also verify
requirements with model checking.

The consistency of task models and interactive applications can also be
checked by first generating scenarios from task models to be latter run in the
target application. For HAMSTERS, a technique for scenario generation has
been proposed [6] that first generates a state machine from a task model, and
then uses standard graph traversals to generate possible sequence of tasks that
can complete the goal. To keep the number of generated scenarios under control,
this work was latter extended with a technique to manipulate the task model
prior to generating the state machine, with the goal of guiding the generation
of scenarios to those more relevant for the system under analysis [7]. Our Alloy



Task Model Design and Analysis with Alloy 17

specification of HAMSTERS task models could also be used for directly gener-
ating relevant scenarios, since, as shown in Section 4.1, run commands can be
used to generate scenarios satisfying given constraints.

Techniques to analyze the impact of user errors on task models have also been
studied before [3,9,10]. In particular, an extension of the HAMSTERS notation
has been proposed to explicitly describe possible user errors [10]. Our formaliza-
tion only handles some of the user errors that can described in this extension,
namely slips and lapses in sequence tasks. Methods have been proposed for an-
alyzing the impact of user errors on CTT [20] or HAMSTERS task models [14].
Unlike these manual techniques, our Alloy-based technique allows the automatic
analysis of the impact of user errors in HAMSTERS task models.

6 Conclusion

This paper introduced a technique for task model design with Alloy, that enables
the automatic validation and verification of the coupling of a HAMSTERS task
model with a state-based system model. The proposed technique also allows
the automatic analysis of the impact of user errors. The technique was applied
to the AMAN case study, helping us identify and propose fixes to flaws in the
interaction design and in the system requirements.

Although this paper mainly focused on the application of the proposed tech-
nique to the AMAN case study, we believe that it has other potential utilities.
First, our semantic model could be used as a backend for other tools that rely
on the HAMSTERS notation – for example, by augmenting the HAMSTERS
simulator with an ability to automatically generate sample scenarios or verify
properties. By leveraging the capability of the Alloy Analyzer to exhaustively
enumerate a set of instances, our approach could also be used to generate test
cases from a task model and execute them to evaluate the underlying applica-
tion. Finally, we plan to apply our approach to analyze task models in other
safety-critical domains, such as medical devices [8] and automotive systems [4].

References

1. Barboni, E., Ladry, J.F., Navarre, D., Palanque, P., Winckler, M.: Beyond mod-
elling: An integrated environment supporting co-execution of tasks and systems
models. In: EICS. pp. 165–174. ACM (2010)

2. Ben Amor, M.: Hamsters: A new task model for interactive systems. Master’s
thesis, University of Namur (2009)

3. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: Generating phenotypical erroneous
human behavior to evaluate human–automation interaction using model checking.
International Journal of Human-Computer Studies 70(11), 888–906 (2012)

4. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model check-
ing human–automation interaction using task analytic models. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans 41(5), 961–976
(2011)



18 A. Cunha and N. Macedo and E. Kang

5. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The Electrum Analyzer: Model
checking relational first-order temporal specifications. In: ASE. pp. 884–887. ACM
(2018)

6. Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.:
Systematic automation of scenario-based testing of user interfaces. In: EICS. pp.
138–148. ACM (2016)

7. Campos, J.C., Fayollas, C., Gonçalves, M., Martinie, C., Navarre, D., Palanque, P.,
Pinto, M.: A more intelligent test case generation approach through task models
manipulation. Proceedings of the ACM on Human-computer Interaction 1(EICS),
1–20 (2017)

8. Campos, J.C., Harrison, M.: Modelling and analysing the interactive behaviour of
an infusion pump. Electronic Communications of the EASST 45 (2011)

9. Cerone, A., Lindsay, P.A., Connelly, S.: Formal analysis of human-computer in-
teraction using model-checking. In: SEFM. pp. 352–362. IEEE Computer Society
(2005)

10. Fahssi, R., Martinie, C., Palanque, P.: Enhanced task modelling for systematic
identification and explicit representation of human errors. In: INTERACT. LNCS,
vol. 9299, pp. 192–212. Springer (2015)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
revised edn. (2016)

12. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE. pp. 373–383. ACM (2016)

13. Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported
framework for coupling task models and interactive applications. In: EICS. pp.
244–253. ACM (2015)

14. Martinie, C., Palanque, P., Fahssi, R., Blanquart, J.P., Fayollas, C., Seguin, C.:
Task model-based systematic analysis of both system failures and human errors.
IEEE Transactions on Human-Machine Systems 46(2), 243–254 (2015)

15. Martinie, C., Palanque, P.A., Winckler, M.: Structuring and composition mecha-
nisms to address scalability issues in task models. In: INTERACT. LNCS, vol. 6948,
pp. 589–609. Springer (2011)

16. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for developing and analyzing
task models for interactive system design. IEEE Transactions on Software Engi-
neering 28(8), 797–813 (2002)

17. Palanque, P., Campos, J.C.: AMAN case study (2022)
18. Paterno, F.: Model-based design and evaluation of interactive applications.

Springer (1999)
19. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation

for specifying task models. In: INTERACT. IFIP Conference Proceedings, vol. 96,
pp. 362–369. Chapman & Hall (1997)

20. Paterno, F., Santoro, C.: Preventing user errors by systematic analysis of deviations
from the system task model. International Journal of Human-Computer Studies
56(2), 225–245 (2002)

21. Thimbleby, H.: Fix IT: How to see and solve the problems of digital healthcare.
Oxford University Press (2021)


	Task Model Design and Analysis with Alloy

