
Alloy Goes Fuzzy

Pedro Silva1,3[0000−0001−6918−5558], Alcino Cunha1,3[0000−0002−2714−8027], Nuno
Macedo2,3[0000−0002−4817−948X], and José N. Oliveira1,3[0000−0002−0196−4229]

1 Universidade do Minho, Braga, Portugal {alcino,jno}@di.uminho.pt
2 Universidade do Porto, Porto, Portugal nmacedo@fe.up.pt
3 INESC TEC, Porto, Portugal pedro.d.silva@inesctec.pt

Abstract. Humans are good at understanding subjective or vague state-
ments which, however, are hard to express in classical logic. Fuzzy logic is
an evolution of classical logic that can cope with vague terms by handling
degrees of truth and not just the crisp values true and false.
Logic is the formal basis of computing, enabling the formal design of
systems supported by tools such as model checkers and theorem provers.
This paper shows how a model checker such as Alloy can evolve to handle
both classical and fuzzy logic, enabling the specification of high-level
quantitative relational models in the fuzzy domain.
In particular, the paper showcases how QAlloy-F (a conservative, general-
purpose quantitative extension to standard Alloy) can be used to tackle
fuzzy problems, namely in the context of validating the design of fuzzy
controllers. The evaluation of QAlloy-F against examples taken from var-
ious classes of fuzzy case studies shows the approach to be feasible.

Keywords: Fuzzy relations · Formal methods · Model checking · Alloy.

1 Introduction

Expressing subjective statements based on personal experience is something that
comes naturally to people. Humans hear remarks such as “the weather is cold
today” and have no problem making sense of the meaning. However, when com-
municating with machines, conveying such phrases becomes challenging, as ma-
chines are used to dealing with precise information only. After all, from the
previous statement alone one is just unable to determine what the exact outside
temperature is. In fact, that very same phrase may be said under drastically
different values of the temperature, depending on who is saying it, their back-
ground, where they are located and the climate that they are used to.

Zadeh [39] establishes a means to express such statements through fuzzy set
theory (more commonly referred to as fuzzy logic), arising as a generalization
of classical set theory. Rather than making use of Boolean values, one reasons
over real numbers which, within the unit interval, describe degrees of truth. Since
Zadeh’s pioneering work there has been a lot of interest in fuzzy logic and fuzzy
systems, both from the theoretical and practical sides, see e.g. [9,28,38,17]. More-
over, tools such as MATLAB®’s Fuzzy Logic Toolbox™ [14] and FuzzyLite [27]

2 Silva et al.

provide means of designing fuzzy controllers, exploring different inputs, experi-
menting with different values of the inputs and seeing the resulting behaviour.

However, as far as the authors are aware, there are no tools that provide
high-level modelling and verification techniques readily available for structural
modelling within the fuzzy domain. Existing work either acts at a low-level
of abstraction [3,37,36], or is concerned with checking the behaviour of fuzzy
systems [26,31,23,35]. We argue that, precisely due to the uncertain nature of
fuzzy systems, high-level tools that can be used by domain experts are essential,
whereby alternative designs can be explored in the early stages of development.

Alloy [13] excels in such structural modelling when standard logic is used, and
a recent extension by this team, QAlloy [30], allows reasoning about quantitative
models. The main contribution of this paper is to showcase how a variant of
QAlloy can be used to tackle fuzzy problems through fuzzy relational reasoning,
thus enabling one to specify high-level quantitative relational models in the fuzzy
domain. We denote this variant as QAlloy-F, and consider it orthogonal to the
originally proposed QAlloy-I for the integer domain.

The rest of the paper is structured as follows: Section 2 provides some back-
ground on fuzzy logic. Section 3 presents QAlloy-F by example, followed by its
formal presentation in Section 4. Section 5 shows its application to the design
of fuzzy controllers and Section 6 evaluates the tool. Lastly, Section 7 presents
related work and Section 8 wraps up the paper.

2 Background

Standard predicate calculus deals with either true or false statements. It is com-
mon to represent the truth values false by 0 and true by 1 subject to logic
operators, making a Boolean algebra. For instance, given p, q ∈ {0, 1} the mul-
tiplication p · q expresses logic conjunction, p ∧ q. Similarly, p ∨ q = p+ q − p · q
defines logic disjunction, ¬p = 1− p logic negation, and so on.

The use above of simple arithmetic operations over {0, 1} to express Boolean
operators is suggestive of a possible generalization: what if one uses the whole
interval [0, 1] of real numbers and not just its boundaries {0, 1}? The closer some
p ∈ [0, 1] would be to 1 (resp. 0), the “more true” (resp. “more false”) it would
be. The arithmetic operator definitions could stay the same and one would deal
with degrees of truth rather than discrete truth or falsehood, obtaining a more
expressive and flexible logical framework. Such is the motivation and formal basis
of fuzzy logic [39].

Fuzzy logic. As hinted above, in fuzzy logic the standard logic connectives x∧ y
and x∨ y become real number functions of type [0, 1]× [0, 1] → [0, 1]. Instead of
x∧y, the notation t(x, y) is used in fuzzy logic, t being named the triangular norm
(or t-norm, for short). Dually, disjunction is expressed by s(x, y), the so-called
triangular conorm (abbrev. t-conorm). To make formulæ more readable we adopt
the infix notations x ⊓ y for t(x, y) and x ⊔ y for s(x, y). Triangular (co)norms
may vary in fuzzy logic. Table 1 gives a few standard definitions, the so-called

Alloy Goes Fuzzy 3

algebraic product being the instance that opened this section. In general, the
t-norm is a binary operation that must enjoy the properties of commutativity,
associativity, monotonicity and respect the boundary condition x⊓1 = x for any
x ∈ [0, 1]. The dual t-conorm must abide to the same properties, its boundary
condition being 0⊔x = x, for all x ∈ [0, 1]. The algebraic product, Gödelian and
Łukasiewicz t-norms of Table 1 are the most popular.

Table 1. Triangular norms and conorms

t-norm x ⊓ y t-conorm x ⊔ y

Gödelian minimum min(x, y) Gödelian maximum max(x, y)

Łukasiewicz intersection max(0, x+ y − 1) Łukasiewicz union min(x+ y, 1)

Algebraic product x · y Algebraic sum x+ y − x · y

Drastic product

x if y = 1
y if x = 1
0 otherwise

Drastic sum

x if y = 0
y if x = 0
1 otherwise

Einstein product x·y
1+(1−x)·(1−y)

Einstein sum x+y
1+x·y

Fuzzy relation algebra. A fuzzy set A over the universe U is defined by its char-
acteristic function µA : U → [0, 1] mapping all elements of the universe to their
respective degree of truth (or membership). This function µA is usually named
the membership function of A. We follow [29] and abbreviate µA(x) to A(x).
Wherever, for every x ∈ U , A(x) = 0 or A(x) = 1, A is said to be a crisp set,
representing a classical set. Analogously, a fuzzy (binary) relation [38] R : X → Y
between two crisp sets X and Y is characterized by the membership function
µR : X × Y → [0, 1], specifying the degree of membership of each pair (x, y) in
R. Again, we abbreviate µR(x, y) by R(x, y). Binary relations can be seen as sets
whose elements are pairs, and all operations on sets can be applied to binary
relations. Moreover, the concept can be generalized to relations of higher arity.

The standard operations on sets and relations can “go fuzzy” as follows:

– The complement of a fuzzy set A is the fuzzy set A defined by the membership
function A(x) = 1−A(x), for every x ∈ U .

– Two fuzzy sets A and B may be combined through intersection (A∩B)(x) =
A(x) ⊓B(x) or union (A ∪B)(x) = A(x) ⊔B(x).

– The Cartesian product of two fuzzy sets A and B follows the definition of
the t-norm, i.e., (A×B)(x, y) = A(x) ⊓B(y) for x, y ∈ U .

– A fuzzy set A is contained in another fuzzy set B, written A ⊆ B, whenever
A(x) ≤ B(x) for every x ∈ U .

– Every fuzzy relation R : X → Y has a converse relation R◦ : Y → X, which
is such that R◦(y, x) = R(x, y), for all x, y ∈ U .

– Two fuzzy relations R : X → Y and S : Y → Z can be composed to create
the relation R ·S : X → Z such that (R ·S)(x, z) = (

⊔
y : R(x, y)⊓S(y, z)).

A fuzzy operator that arises from the notion of crispness is the α-cut. The
α-cut of a fuzzy set A is the crisp set Aα = {a ∈ U | A(a) ≥ α}.

4 Silva et al.

3 QAlloy-F by Example

Patient
Q //

T⊇Q·R

44Symptom
R // DiseaseLet us start with a simple, classical

fuzzy problem — Sanchez’s approach
to performing medical diagnosis [29].
Given a fuzzy relation Q : Patient → Symptom that encodes the symptoms
exhibited by a set of patients, and a fuzzy relation T : Patient → Disease that
determines how experts diagnosed those patients, in [29] the authors propose to
synthesize the medical knowledge as a fuzzy relation R : Symptom → Disease
such that Q · R ⊆ T . This relation could then be applied to other patients,
with the disease(s) that display the highest degree selected as diagnoses. This is
expected to be an iterative process in which experts validating the candidate R
relations could be easily supported by QAlloy-F.

Lines 1–7 of Fig. 1 show how these relations could be encoded in QAlloy-F.
The structure is introduced through the declaration of signatures and fields
relating them. Signature Patient represents patients. The particular symp-
toms and diseases present in the collected data are declared as specializations of
their parent signatures Symptom and Disease, respectively, which are marked
as abstract to avoid atoms outside those specializations.

Regular fields in Alloy relate each atom of the parent signature with atoms
of other signatures, according to some multiplicity. In QAlloy-F, however, these
can be annotated with keyword fuzzy, denoting that the membership of a tuple
in such relations is no longer Boolean but rather a value between 0 and 1. In the
example, we have a fuzzy field relating each patient with some symptoms, and
another relating each symptom with a set of diseases.

The (fuzzy) diagnosis of a patient is simply encoded as Q � R, where � denotes
relational composition, which by default has a Gödelian min-max semantics (re-
call Table 1): for a patient p, a disease d and a symptom s, select the minimum
between the degree p exhibits s and the degree s is related with d; then the
degree between p and d is the maximum among all available symptoms.

Table 2. Example of a medical diagnosis relation R

R Viral Fever Typhoid Stomach problem Malaria Chest problem
Temperature 0.4 0.3 0.1 0.7 0.1

Cough 0.4 0.2 0.2 0.7 0.2
Stomach pain 0.1 0.2 0.8 0 0.2
Chest pain 0.1 0.1 0.2 0.1 0.8
Headache 0.3 0.6 0.2 0.2 0

The final diagnosis is obtained by selecting the disease(s) with maximum de-
gree through auxiliary function diagnosis (ll. 9–10). It constructs by compre-
hension a crisp relation between each patient and the diseases diagnosed with
maximum degree (function max returns a crisp relation with the tuples with
maximum degree). Finally, we need to encode the relation R determined by the

Alloy Goes Fuzzy 5

1 sig Patient {
2 fuzzy Q : some Symptom }
3 abstract sig Symptom {
4 fuzzy R : set Disease }
5 one sig Temp, Cough, StmPn, ChtPn, Hdche extends Symptom {}
6 abstract sig Disease {}
7 one sig ViralFv, Typhoid, StmPrb, Malaria, ChtPrb extends Disease {}
8

9 fun diagnosis : Patient → Disease {
10 { p:Patient, d:Disease | d in max[p �Q �R] } }
11

12 fun expert_R : Symptom → Disease {
13 (0 �4**Temp + 0 �4**Cough + 0 �1**StmPn + 0 �1**ChtPn + 0 �3**Hdche) → ViralFv +
14 (0 �7**Temp + 0 �2**Hdche + 0 �7**Cough + 0 �1**ChtPn) → Malaria +
15 (0 �3**Temp + 0 �2**Cough + 0 �1**ChtPn + 0 �6**Hdche + 0 �2**StmPn) → Typhoid +
16 (0 �1**Temp + 0 �2**Cough + 0 �8**StmPn + 0 �2**ChtPn + 0 �2**Hdche) → StmPrb +
17 (0 �1**Temp + 0 �2**StmPn + 0 �8**ChtPn + 0 �2**Cough) → ChtPrb }
18

19 run two_diagnosis {
20 R = expert_R and
21 some p:Patient |
22 Malaria + ChtPrb in p �diagnosis } for 1 Patient
23

24 run same_diagnosis {
25 R = expert_R and
26 some p1,p2:Patient |
27 p1 �diagnosis = p2 �diagnosis and no p1 �Q & p2 �Q } for 2 Patient
28

29 check maxChestPain {
30 R = expert_R implies all p:Patient |
31 ChtPn in max[p �Q] implies ChtPrb in p �diagnosis }

Fig. 1. Encoding of the fuzzy medical diagnosis in QAlloy-F

experts. As an example, consider the relation R of Table 2, which is taken from
reference [9]. To keep the model flexible and allow for the exploration of alter-
native solutions, we encode it as a function expert_R (ll. 12–17). In QAlloy-F,
concrete fuzzy relations are created with scalar multiplication **. Here, we create
fuzzy sets of symptoms and assign them to diseases through Cartesian product
→. Symptoms with degree 0 are simply absent from the resulting relation.

Given this model, we can make use of QAlloy-F’s model finding capabili-
ties to validate the provided R. Instances can be generated with run commands
accompanied by further restrictions. For instance, suppose we want to see sce-
narios where the provided R leads to two diseases being diagnosed for the same
patient. The command in ll. 19–22 asks for instances where R is exactly the ex-
pert data and there is some patient diagnosed with malaria and chest problems.

6 Silva et al.

Fig. 2. Instance visualization for model in Fig. 1

Q is left unrestricted so that all possible symptom valuations are explored by
the finder. For now we focus on scenarios with a single patient, so we restrict
the command’s scope, which determines how many atoms each signature may
contain. Running the command results in the instance shown in Fig. 2, after
some theme customization to enhance readability. Interestingly, the patient is
mostly showing signs of chest pain and coughing, which lead to 2 diagnosed dis-
eases. The evaluator (left-hand side) can be used to further inspect the instance,
whereby it will show that a patient with those symptoms is most likely afflicted
by chest problems and malaria, the diseases of maximum degree 0.7. Alternative
witnesses to this scenario can also be enumerated from the visualizer.

As another example, consider the command in ll. 24–27, which asks for sce-
narios where two patients have the same diagnosis but disjoint symptoms (notice
the increased scope on patients). The command is valid, and experts would need
to validate the scenarios and act accordingly.

Besides encoding scenarios as run commands, we can also rely on check
commands to check whether bottom-line properties hold. For instance, the com-
mand in ll. 29–31 checks whether having chest pain among the most relevant
symptoms implies chest problems among the diagnosis. QAlloy-F searches for
all possible symptoms for patients and finds no counter-example, meaning that
the property is always true for the provided R. Experts can encode several of
these properties to be automatically checked for alternative R values. Note that
we do not have to completely fix R with the expert knowledge. Say we want to
check whether the property still holds for alternative relationships between chest
pain and stomach problems. We could just constrain R to a subset of expert_R
by writing R − ChtPn→StmPrb = expert_R − ChtPn→StmPrb, leaving the
degree to which chest pain is related to stomach problems free. QAlloy-F will
show that the property no longer holds by assigning it a large degree in R.

4 The QAlloy-F Analyzer

Language. The full syntax of the QAlloy-F language is presented in Fig. 3, with
changes relative to standard Alloy underlined. Compared to QAlloy-I [30] for the
integer domain, the int keyword was replaced with fuzzy to declare quantitative
relations over the unit interval of real numbers. Much like in the integer domain,

Alloy Goes Fuzzy 7

spec ····= module qualName [[name,+]] import∗ paragraph∗

import ····= open qualName [[qualName,+]] [as name]
paragraph ····= sigDecl | factDecl | funDecl | predDecl | asrtDecl | chckCmd
sigDecl ····= [fuzzy] [abstract] [mult] sig name,+

[sigExt] { fuzzyDecl,∗ } [block]
sigExt ····= extends qualName | in qualName [+ qualName] ∗

mult ····= lone | some | one
decl ····= [disj] name,+ : [disj] expr
fuzzyDecl ····= [fuzzy] decl
factDecl ····= fact [name] block
asrtDecl ····= assert [name] block
funDecl ····= fun name [[decl,∗]] : expr { expr }
predDecl ····= pred name [[decl,∗]] block
expr ····= const | qualName | @name | this | unOp expr | expr binOp expr

| expr arrowOp expr | expr [! | not] compareOp expr
| expr (=> | implies) expr else expr | quant decl,+ blockOrBar
| expr [expr,∗] | (expr) | block | { decl,+ blockOrBar }

const ····= none | univ | iden
unOp ····= ! | not | no | mult | set | ~ | * | ^ | #

| drop | real ** | real−cut
binOp ····= || | or | && | and | <=> | iff | => | implies

| & | + | − | ++ | <: | :> | �
| add | sub | mul | div | rem

arrowOp ····= [mult | set] → [mult | set]
compareOp ····= in | = | != | < | ≤ | > | ≥
letDecl ····= name = expr
block ····= { expr∗ }
blockOrBar ····= block | | expr
quant ····= all | no | mult
chckCmd ····= check qualName [scope]
scope ····= for integer [but typescope,+] | for typescope,+

typescope ····= [exactly] integer qualName
qualName ····= [this/] (name/)∗ name

Fig. 3. Concrete syntax of the QAlloy-F language

numeric values (which are now real numbers belonging to [0, 1]) can no longer be
stand-alone expressions, but must be associated with the scalar multiplication
operator (**), relying on Alloy’s rich type system to perform simple dimensional
analysis. drop can be used to transform fuzzy relations into Boolean ones, taking
every non-zero value to 1. A new operator that arises from the fuzzy domain is the
α−cut introduced in Section 2, with α ∈ [0, 1]. Although in the integer domain
we provided two variants of the join operator that were deemed relevant, there
are simply too many variants available for the fuzzy domain. Thus, we have
opted to let the user select the desired t-norm (and respective t-conorm), from
which the semantics of the join operator is derived.

8 Silva et al.

Similarly to QAlloy-I, the formal semantics of QAlloy-F expressions is deter-
mined by a quantity function that is defined inductively over relational expres-
sions, as Fig. 4 shows for a fragment of the language. Let A be the universe of
atoms, determined from the scope of the command at hand, and s be a binding,
i.e., a function that for every free relation r and tuple t with appropriate arity
returns its quantity q = s(r, t). The quantity function of a relational expression
Γ under the binding s is given by JΓ Ks. A tuple t belongs to Γ under the binding
s iff JΓ Ks(t) ̸= 0. Signatures and fields are declared as in QAlloy-I. The seman-
tics of fuzzy relational operations are defined as presented in Section 2, varying
according to the t-norm (⊓) and t-conorm (⊔) considered. Arithmetic operators
are still supported but truncated in the range [0,1], and the scalar multiplication
(**) now takes a real number α ∈ [0, 1] instead of an integer. The semantics of
QAlloy-F formulas is identical to QAlloy-I, for which the reader is redirected to
[30]. It is worth noting that QAlloy-F is retro-compatible, so a model with no
fuzzy relations/expressions is equivalent to a standard Alloy model.

Backend. QAlloy extends Kodkod [34] to support generic numeric structures to
manage the numeric matrices. This was extended to handle real numbers and
represent fuzzy relations, with the matrix operations being further generalized
to depend on the definition of t-norms, adding support for those in Table 1.
With the quantitative Kodkod problem encoded through fuzzy matrices com-
bined through linear algebra operations, QAlloy-F makes use of SMT solvers to
automatically solve the resulting formulas. This SMT problem uses real function
symbols instead of integer ones, and takes into consideration the definition of
the selected t-norm/t-conorm pair. Moreover, the SMT solvers perform verifica-
tion of these problems according to the Theory of Reals, namely over the logic
fragment QF_NRA (Quantifier-free real arithmetic) [4].

Alloy Analyzer. The QAlloy-F Analyzer4 is responsible for parsing the model,
encoding it into a quantitative Kodkod problem and then for interpreting back
the results obtained and presenting them to the user. It has therefore been
adapted in a similar way to QAlloy-I. A key difference is that in this context,
the Analyzer provides to the user the various t-norms supported by selecting
T-norm in the Options in the menu bar. Alternatively it can be set through a
special annotation in the model, making it self-contained.

After obtaining a solution, the user may further interact with it through the
Analyzer features such as the Visualizer and Evaluator, which were adapted to
present the fuzzy information to the user (see Fig. 2) and allow the evaluation
of fuzzy expressions, respectively.

5 Validating Fuzzy Inference Systems with QAlloy-F

Fuzzy controllers are one of the main applications of fuzzy logic and, in some
scenarios, they have shown to be almost as effective as precise mathematical
models, being cheaper to develop and implement [28].
4 QAlloy-F is publicly available at https://github.com/pf7/QAlloy-F/.

https://github.com/pf7/QAlloy-F/

Alloy Goes Fuzzy 9

JrKs(t) = s(r, t)

JxKs((a)) = s(x, (a))

JunivKs((a)) = 1

JnoneKs((a)) = 0

JidenKs((a,b)) =

{
1 if a = b

0 otherwise
JΓ + ∆Ks(t) = JΓ Ks(t) ⊔ J∆Ks(t)
JΓ & ∆Ks(t) = JΓ Ks(t) ⊓ J∆Ks(t)

JΓ − ∆Ks(t) =

{
0 if JΓ Ks(t) = 0

JΓ Ks(t)−min(JΓ Ks(t), J∆Ks(t)) otherwise
Jadd[Γ,∆]Ks(t) = min(JΓ Ks(t) + J∆Ks(t), 1)
Jsub[Γ,∆]Ks(t) = max(JΓ Ks(t)− J∆Ks(t), 0)
Jmul[Γ,∆]Ks(t) = JΓ Ks(t)× J∆Ks(t)
Jdiv[Γ,∆]Ks(t) = min(JΓ Ks(t) / J∆Ks(t), 1)
Jrem[Γ,∆]Ks(t) = JΓ Ks(t) % J∆Ks(t)
Jα ** Γ Ks(t) = αJΓ Ks(t)
JΓ � ∆Ks((a1,...,an−1,b2,...,bm)) =

⊔
c∈A

((JΓ Ks((a1,...,an−1,c)) ⊓ J∆Ks((c,b2,...,bm))))

JΓ → ∆Ks((a1,...,an,b1,...,bm)) = JΓ Ks((a1,...,an)) ⊓ J∆Ks((b1,...,bm))

J~Γ Ks((a,b)) = JΓ Ks((b,a))
J^Γ Ks((a,b)) =

⊔
(JΓ Ks((a,b)), JΓ �Γ Ks((a,b)), JΓ �Γ �Γ Ks((a,b)), . . .)

J{x1 : Γ1,...,xn : Γn | ϕ}Ks((a1, ..., an)) =

{
JΓ1Ks((a1))× ... × JΓnKs((an)) if s′ |= ϕ

0 otherwise
where s′ = s⊕ (x1, (a1)) 7→ JΓ1Ks((a1)) ⊕ ... ⊕ (xn, (an)) 7→ JΓnKs((an))

Jdrop Γ Ks(t) =

{
0 if JΓ Ks(t) = 0

1 otherwise

Jα−cut Γ Ks(t) =

{
1 if JΓ Ks(t) ≥ α

0 otherwise

J#Γ Ks(t) =

min(
∑

t′∈⌈Γ⌉
JΓ Ks(t′), 1) if t ∈ ⌈Γ ⌉

0 otherwise

Fig. 4. Semantics QAlloy-F relational expressions (A is the declared universe, n and
m the arity of Γ and ∆, respectively)

Such controllers use Fuzzy Inference Systems (FIS) for their decision making,
a process depicted in Fig. 5. The most popular FIS types are the Mamdani [24]
and Takagi-Sugeno-Kang (Sugeno in short) [32], the former being better suited
for humane usage, while the latter is computationally more efficient [28]. This sec-
tion describes how Mamdani-type FISs can be encoded and validated in QAlloy-
F; a Sugeno-type FIS is used in the evaluation in Section 6.

10 Silva et al.

Fig. 5. Fuzzy inference process

5.1 Developing a FIS for an Automatic Heater

This section describes the development of a fuzzy controller for an automatic
heater, using standard tools such as MATLAB®’s Fuzzy Logic Toolbox™.

The controller is expected to react to the temperature and the relative hu-
midity of the environment — input variables T ∈ [−20, 50] (◦C) and H ∈ [0, 1]
(%), respectively — and in turn adjust the power level of the heater — output
variable P ∈ [0, 1], ranging from turned off (0) to providing its maximum heat
(1). These crisp values can be described through vague terms in the fuzzy realm,
known as linguistic variables, each represented by a fuzzy set — here, cold,
warm and hot for temperature, dry, normal and wet for humidity, and low, mid
and high for heater power. This enables reasoning over statements such as “The
heater is currently emitting heat at a low power”.

At the core of FISs are the so-called fuzzy rules. The process starts by fuzzi-
fying the crisp values into fuzzy ones through the definition of membership func-
tions. For instance, Fig. 6 shows variables T , H and P fuzzified in MATLAB®

according to trapezoid, triangular, z- and s-shapes, following the defined lin-
guistic variables. These decisions, which affect the performance of the fuzzy
system [1], are commonly made by domain experts or inferred from big data.

Fig. 6. Variables for the automatic heater designed in MATLAB®

The behaviour of the controller is mainly determined by the rule base and is
also designed with expert insight. An example of a rule is the following, stating
that the system must react to cold temperatures and wet air by raising the power
to high levels. A rule may depend on multiple antecedents, combined through
fuzzy connectives (here, ⊓).

IF T is cold AND H is wet THEN P is high (R1)

Alloy Goes Fuzzy 11

Fig. 7. Rules for the automatic heater designed in MATLAB®

The rule inference process is configured to determine the strength of each rule
when triggered. This includes selecting operations for calculating the antecedent
of each rule, an implication method to combine the antecedent strength with the
output membership function, and an aggregation method to combine the output
membership function of each rule into a single fuzzy set. Lastly the defuzzification
step selects a crisp value from the calculated output fuzzy set. This process is
shown in Fig. 7 for a system with 4 rules, the first being rule R1.

At this point, the user can select concrete inputs and check the resulting
output (-15◦C and 70% in Fig. 7). The highly configurable nature of FISs should
be clear by now. Note that the parameters of each step affect its behaviour and
also its performance [2,15,16]. This motivates the need for tools such as QAlloy-
F to complement existing tools for FIS design, by helping the designer validate
the fuzzy system and continuously refine it through a back-and-forth between
said tools and QAlloy-F, until a satisfactory fuzzy controller is achieved.

5.2 Encoding FISs in QAlloy-F

A possible encoding in QAlloy-F of the FIS just described is shown in Fig. 8.
The configuration of a FIS developed in MATLAB® is stored in a .fis file.
We have implemented a prototype, also provided in the QAlloy-F repository, to
automatically translate them into such a QAlloy-F model.

QAlloy-F supports Boolean and fuzzy relations only, so it is not possible to
directly specify real-numbered crisp values such as e.g. temperatures. We assume
that such a range is normalized to the unit interval and T modelled as a fuzzy set,
declared with respect to its type Celsius (ll. 4–5). Omitted for space-economy,
variables H and P are declared analogously as fuzzy sets on Percentage and
Power. The linguistic variables are also defined as signatures, and those for tem-
perature are shown in ll. 7–8. Fuzzy subset signatures fuzzyT (l. 9), fuzzyH
and fuzzyP are declared to represent the fuzzified variables. We encoded in a
utility module mf some function shapes. For instance, by opening mf over linguis-
tic variable Temperature and crisp value T (l. 2), function trapezoid returns
the corresponding fuzzy input variable according to that shape, as imposed in
fact fuzzification (ll. 11–16). Note that these shape ranges act on the [0, 1]

12 Silva et al.

1 /*# TNORM Godelian #*/
2 open util/mf[Temperature, T]
3 . . .
4 one sig Celsius {}
5 fuzzy sig T in Celsius {}
6

7 abstract sig Temperature { R : Humidity set → set Heater }
8 one sig cold, warm, hot extends Temperature {}
9 fuzzy sig fuzzyT in Temperature {}

10 . . .
11 fact fuzzification {
12 fuzzyT =
13 linz[0 �214**cold, 0 �429**cold] +
14 trapezoid[0 �357**warm, 0 �571**warm, 0 �714**warm, 0 �857**warm] +
15 lins[0 �714**hot, 0 �857**hot]
16 . . . }
17

18 fun ruleBase : Temperature → Humidity → Heater {
19 cold → wet → high +
20 cold → dry → mid +
21 warm → normal → low +
22 hot → dry → low }
23

24 fun aggregated : Heater { fuzzyH �(fuzzyT �R) }
25

26 fact defuzzification {
27 aggregated :> max[aggregated] ≤ fuzzyP :> max[aggregated]
28 no max[aggregated] implies P = 0 �5 ** Power }

Fig. 8. Excerpt of an automatic heater based on Mamdani FIS in QAlloy-F

normalized crisp values rather than on the temperature interval [−20, 50]. Our
translation from .fis configurations automatically performs this normalization.

Rules relate linguistic variables and are naturally represented as a Boolean
ternary relation, as declared in l. 7. Function ruleBase (ll. 18–22) encodes the
provided rule base, with the first entry denoting rule R1. In the decision process
we consider only a subset of methods supported in MATLAB® to keep the
model succinct and maintainable. In particular, we assume the antecedent and
aggregation methods use the selected t-norm (set as a special annotation in l. 1).
Thus, by composing the rule base with the fuzzy input variables simultaneously
calculates the antecedent with ⊓, and aggregates all rules with ⊔. This is shown
in function aggregated (l. 24), which returns a fuzzy set on Heater linguistic
variables. The implication and defuzzification steps are encoded together in a
fact given in ll. 26–28. Currently, we only support the maximum defuzzification
method by selecting the maximum linguistic variable from aggregated. Then,
given minimum as the implication method, the fuzzy value of P is forced to take

Alloy Goes Fuzzy 13

at least said aggregated value. When no rule is triggered, the heater will default
to work at mid-power (l. 28), a convention followed by MATLAB®.

5.3 FIS Validation and Verification

Given the translation above, one can write commands to simulate the FIS or
check for properties. But rather than running the FIS for concrete inputs, we
can ask for underspecified scenarios. For instance, the following command asks
for instances where the temperature is high but the heater running on low.
QAlloy-F quickly answers with an instance with very low level of humidity.

run highTemperature {
ruleBase = R and P < 0 � 1**Power and T > 0 � 8**Celsius }

We can also test for red flags in our model, for instance: is it ever possible to
have the heater run on high power with moderate/hot temperature? QAlloy-F
will answer that there is no such instance.

check highPower {
ruleBase = R and T > 0 � 5**Celsius implies P ≤ 0 � 5**Power }

Perhaps more interestingly, the user can relax the constraints to explore dif-
ferent designs. For instance, expert-information like membership function ranges
or the rule base can be partially specified and left for QAlloy-F to explore. Let
us say that we want to extend the rule base, and wish to check whether this
may break the property above. We can state that R is larger than the provided
ruleBase as follows:

check highPowerExtends {
ruleBase in R and T > 0 � 5**Celsius implies P ≤ 0 � 5**Power }

QAlloy-F now reports a counter-example: if rule warm → dry → mid is added,
a low level of humidity will turn the power up.

Given that scenario, we may wish to search for rules where even with low
humidity, the power stays low. The following command can be used, which will
suggest to use warm → dry → low instead.

run lowHumidityExtends {
ruleBase in R and T = 0 � 5**Celsius and no H and P < 0 � 5**Power }

6 Evaluation

We explored the applicability of QAlloy-F to other fuzzy scenarios, leading to
the following example models that are also used for performance evaluation:

– Diagnosis. The medical diagnosis example presented in Section 3, with the
commands presented in Fig. 1.

14 Silva et al.

– Intuitionistic. Some authors [9] have argued that the diagnosis prob-
lem addressed in Section 3 is better encoded in an intuitionistic setting,
where each set A has a membership function µA and a non-membership
function νA, related by a score function [7]. QAlloy-F is sufficiently flexible
to address this encoding, including intuitionistic composition, which applies
regular max-min composition to µA but min-max composition to νA. We
check commands similar to the non-intuitionistic version, but, perhaps un-
surprising, maxChestPain is now invalid: even if chest pain has maximum
membership degree, when the non-membership degree outweighs it, it is un-
likely that the patient is affected by chest problems.

– Portrait. Boolean equivalence relations can be used to partition the uni-
verse at hand. Similarly, a fuzzy equivalence relation can be transformed into
a Boolean one by performing α−cuts over it, with different α values yield-
ing different clusters. This approach has been applied to determine groups
of portraits based on visual similarities [33]. We model fuzzy equivalence
relations in QAlloy-F, and use these to determine clusters according to de-
sirable characteristics (run threeToTwo); as well to check that increasing
the α−cut results in finer-grained clusters (check invProportionality).

– Mamdani. The automatic heater Mamdani FIS model described in Section 5,
with an ⊓-based rule base, with the commands presented in Section 5.3.

– Sugeno. A classical FIS example5 for determining the tip in regards to the
service quality and food taste. We model it as a Sugeno FIS, and in con-
trast to Mamdani, we take a ⊔-based rule base, which is not only modelled
through a Boolean relation R, but also with a fuzzy relation W for the an-
tecedent step and a fuzzy relation Y to model its linear/constant rule output
functions, both of which are used to model the defuzzification weighted av-
erage method in the end. We use QAlloy-F to evaluate different scenarios
(e.g. run findGenerousTip) or to evaluate the strength of known rules (e.g.
check cheapTip) for example.

Our evaluation of QAlloy-F then aimed to answer the following questions:

RQ1 Is the analysis of QAlloy-F models feasible?
RQ2 What is the impact of choosing different t-norms?
RQ3 What is the impact of choosing different SMT solvers?

To answer these questions we measured the execution time of various commands
for the examples described above, for every SMT solver currently integrated
in QAlloy-F — Z3 [25] (v4.8.18), MathSAT [8] (v5.6.6), CVC4 [5] (v1.8) and
Yices [11] (v2.6.4) — and for the algebraic product, Gödelian, and Łukasiewicz
t-norms. All tests were run in a commodity octa-core 3.2GHz AMD Ryzen™ 7
5800H with 16GB of RAM; and QAlloy-F running with 8192MB maximum mem-
ory and 8192k of maximum stack size, with a timeout of 10mins. The models, the
benchmark script and the full results are available in the QAlloy-F repository.
Table 3 presents an excerpt of the results.

5 https://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html

https://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html

Alloy Goes Fuzzy 15

Concerning RQ1, our analysis procedures seem to be feasible even for more
complex models such as Mamdani and Sugeno, with all commands solved in a few
seconds for some solver and t-norm. Interestingly, there is no clear evidence that
satisfiable problems perform better than unsatisfiable ones. Regarding RQ2,
it is interesting to see that the outcome of some commands actually changes
depending on the selected t-norm. In particular, the maxChestPain discussed
in Section 3 is only valid under the default Gödelian. In terms of performance
there is no t-norm clearly outperforming the others, and it often depends on the
selected SMT solver. Nonetheless, the algebraic product seems to be the t-norm
that most often leads to timeouts in all solvers. As for RQ3, there is also no
clear SMT solver outperforming the others, but Z3 and MathSAT seem to be
overall the most consistent when it comes to arriving at a result in usable times.

Table 3. Evaluation results (in ms), entry omitted if all TO, best times in bold, entries
associated with “unknown” responses are crossed out

Model Cmd Scope T-norm Result Z3 MSAT CVC4 Yices

Diagnosis

same_diagnosis 2 Gödelian SAT 5703 641 12162 TO
Łukasiewicz SAT 627 160 2697 TO

maxChestPain 4
Gödelian UNSAT 19765 1097 20170 TO

Łukasiewicz SAT 4463 164 3802 313710
Product SAT 109 TO TO 264

Intuitionistic
same_diagnosis 2 Gödelian SAT 16402 11255 20569 293413

Łukasiewicz SAT 17276 198 2448 258994

maxChestPain 1 Gödelian SAT 479 423 1503 14455
Łukasiewicz SAT 15306 97 611 8742

Portrait

threeToTwo 4
Gödelian SAT 718 485 3905 314
Łukasiewicz SAT 679 488 3923 325

Product SAT 672 490 3930 316

invProportionality 6
Gödelian UNSAT 1313 182 61969 201

Łukasiewicz UNSAT 2321 150 2047 701
Product UNSAT 302 158 5302 143

Mamdani

highPower NA
Gödelian UNSAT 263 104 353 121

Łukasiewicz UNSAT 603 61 173 2894
Product UNSAT 41 TO 228 194

highPowerExtends NA
Gödelian SAT 272 137 726 2877

Łukasiewicz SAT 5375 43 280 2042
Product SAT TO TO 243 1189

Sugeno

findGenerousTip 3
Gödelian SAT 2771 2202 TO 55676

Łukasiewicz SAT 430 453 TO TO
Product UNK 54214 290755 TO TO

cheapTip 4
Gödelian UNSAT 7025 7551 TO 25303

Łukasiewicz UNSAT 1863 2009 TO TO
Product UNSAT 52852 342107 TO TO

7 Related Work

Previous work has relied on SMT solvers to verify formulas in fuzzy logics. Refer-
ence [3] describes how SMT solvers can be used to automatically prove formulas

16 Silva et al.

of infinitely-valued logics. Reference [37] generalizes this approach to more logics,
in particular, continuous t-norm-based logics. Reference [36] further extends [37]
to support modal fuzzy logic. The QAlloy backend interprets the fuzzy relational
operators as a linear algebra over fuzzy matrices and converts them into SMT
formulæ according to the selected t-norm, similarly to these approaches. (They
are also considered within fragments of the theory of reals.) But unlike QAlloy,
these techniques do not provide a specification language to encode fuzzy models.
FLOPER [6] instead relies on fuzzy logic programming to derive all valid models
of a formula. It is implemented in Prolog and supports truth degrees defined as a
complete bounded lattice L. The authors of [40] describe ongoing work to verify
fuzzy logic models, introducing an approach based on symbolic execution, whose
prototype also makes use of an SMT solver.

Considerable work has been done on model checking fuzzy systems, including
checking branching-time temporal logics over fuzzy Kripke structures [26,31,12,23],
branching-time [21,20] and linear-time [19,18,22] temporal logics over possibilis-
tic Kripke structures (which extend fuzzy logic by considering both a possibility
and necessity degree). In [35,10] a modified version of the CMurφ model checker
is proposed for the verification of fuzzy control systems, which relies on exter-
nal C/C++ functions from the controller. QAlloy is currently focused on the
validation of the structural part of fuzzy systems, but extending QAlloy to the
temporal capabilities of Alloy 6 is planned future work, as described below.

8 Conclusions and Future Work

By the very nature of the underlying logic, fuzzy systems are challenging to
design and validate. This paper proposes QAlloy-F, a specification language for
fuzzy relational models, backed by automatic analysis procedures for validation
and verification in the tradition of Alloy. We show that the language is sufficiently
rich to encode fuzzy inference systems, and our evaluation shows the analysis
procedures to be performant for models of this complexity.

There are still open issues with quantitative relational model finding that
we plan to address. We expect to unify QAlloy-F and QAlloy-I to allow reason-
ing about integer-valued models with uncertainty. We also intend to integrate
the temporal capabilities of Alloy 6 into QAlloy. The techniques implemented
in standard Alloy for solution iteration are not effective in generating varied
quantitative solutions, so symmetry breaking must be addressed in this context.

Acknowledgements

The work by J.N. Oliveira is financed by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for
Science and Technology) within the project IBEX, with reference PTDC/CCI-
COM/4280/2021. The work by P. Silva, subject to the PhD studentship grant
with reference 2023.01186.BD, is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within
project LA/P/0063/2020. DOI 10.54499/LA/P/0063/2020.

Alloy Goes Fuzzy 17

References

1. Adil, O., Ali, A., Sumait, B.: Comparison between the effects of different types of
membership functions on fuzzy logic controller performance. International Journal
of Emerging Engineering Research and Technology 3, 76–83 (04 2015)

2. Ahmad, K., Mesiarova, A.: Choosing t-norms and t-conorms for fuzzy controllers.
vol. 2, pp. 641 – 646 (09 2007). https://doi.org/10.1109/FSKD.2007.216

3. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Building automated theorem
provers for infinitely-valued logics with satisfiability modulo theory solvers. In:
2012 IEEE 42nd International Symposium on Multiple-Valued Logic. pp. 25–30
(2012). https://doi.org/10.1109/ISMVL.2012.63

4. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

5. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6806, pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-
1_14, https://doi.org/10.1007/978-3-642-22110-1_14

6. Bofill, M., Moreno, G., Vázquez Pérez-Íñigo, C., Villaret, M.: Automatic proving
of fuzzy formulae with fuzzy logic programming and SMT. Proceedings of XIII
Spanish Conference on Programming and Languages, PROLE 2013 (01 2014).
https://doi.org/10.14279/tuj.eceasst.64.991.974

7. Chen, T.: A comparative analysis of score functions for multiple criteria de-
cision making in intuitionistic fuzzy settings. Inf. Sci. 181(17), 3652–3676
(2011). https://doi.org/10.1016/J.INS.2011.04.030, https://doi.org/10.1016/
j.ins.2011.04.030

8. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol. 7795.
Springer (2013)

9. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in med-
ical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)

10. Della Penna, G., Intrigila, B., Magazzeni, D.: Evaluating fuzzy controller robust-
ness using model checking. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) Fuzzy
Logic and Applications. pp. 303–311. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2009)

11. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification.
pp. 737–744. Springer International Publishing, Cham (2014)

12. Ebrahimi, M., Sotudeh, G., Movaghar, A.: Symbolic checking of fuzzy ctl on fuzzy
program graph. Acta Informatica 56 (02 2019). https://doi.org/10.1007/s00236-
018-0311-3

13. Jackson, D.: Alloy: A language and tool for exploring soft-
ware designs. Communications of the ACM 62(9), 66–76 (2019).
https://doi.org/https://doi.org/10.1145/3338843

14. Jang, J., Gulley.: Matlab: Fuzzy logic toolbox user’s guide. the math-works, inc.,
natick, 19-127. (1997)

15. Kiszka, J.B., Kochańska, M.E., Sliwińska, D.S.: The influence of some fuzzy
implication operators on the accuracy of a fuzzy model-part i. Fuzzy Sets and
Systems 15(2), 111–128 (1985). https://doi.org/https://doi.org/10.1016/0165-
0114(85)90041-7, https://www.sciencedirect.com/science/article/pii/
0165011485900417

https://doi.org/10.1109/FSKD.2007.216
https://doi.org/10.1109/ISMVL.2012.63
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.14279/tuj.eceasst.64.991.974
https://doi.org/10.1016/J.INS.2011.04.030
https://doi.org/10.1016/j.ins.2011.04.030
https://doi.org/10.1016/j.ins.2011.04.030
https://doi.org/10.1007/s00236-018-0311-3
https://doi.org/10.1007/s00236-018-0311-3
https://doi.org/https://doi.org/10.1145/3338843
https://doi.org/https://doi.org/10.1016/0165-0114(85)90041-7
https://doi.org/https://doi.org/10.1016/0165-0114(85)90041-7
https://www.sciencedirect.com/science/article/pii/0165011485900417
https://www.sciencedirect.com/science/article/pii/0165011485900417

18 Silva et al.

16. Kiszka, J.B., Kochańska, M.E., Sliwińska, D.S.: The influence of some fuzzy
implication operators on the accuracy of a fuzzy model-part ii. Fuzzy Sets and
Systems 15(3), 223–240 (1985). https://doi.org/https://doi.org/10.1016/0165-
0114(85)90016-8, https://www.sciencedirect.com/science/article/pii/
0165011485900168

17. Kumar, S., Gangwal, C.: A study of fuzzy relation and its application in med-
ical diagnosis. Asian Research Journal of Mathematics pp. 6–11 (06 2021).
https://doi.org/10.9734/arjom/2021/v17i430289

18. Li, Y.: Quantitative model checking of linear-time properties based on generalized
possibility measures. Fuzzy Sets Syst. 320, 17–39 (2017)

19. Li, Y., Li, L.: Model checking of linear-time properties based on possibility measure.
IEEE Trans. Fuzzy Syst. 21(5), 842–854 (2013)

20. Li, Y., Li, Y., Ma, Z.: Computation tree logic model checking based on possibility
measures. Fuzzy Sets Syst. 262, 44–59 (2015)

21. Li, Y., Ma, Z.: Quantitative computation tree logic model checking based on gen-
eralized possibility measures. IEEE Trans. Fuzzy Syst. 23(6), 2034–2047 (2015)

22. Li, Y., Wei, J.: Possibilistic fuzzy linear temporal logic and its model
checking. IEEE Transactions on Fuzzy Systems 29(7), 1899–1913 (2021).
https://doi.org/10.1109/TFUZZ.2020.2988848

23. Ma, Z., Li, Z., Li, W., Gao, Y., Li, X.: Model checking fuzzy computa-
tion tree logic based on fuzzy decision processes with cost. Entropy 24(9)
(2022). https://doi.org/10.3390/e24091183, https://www.mdpi.com/1099-4300/
24/9/1183

24. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies 7(1), 1–13
(1975). https://doi.org/https://doi.org/10.1016/S0020-7373(75)80002-2, https:
//www.sciencedirect.com/science/article/pii/S0020737375800022

25. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

26. Pan, H., Li, Y., Cao, Y., Ma, Z.: Model checking fuzzy com-
putation tree logic. Fuzzy Sets and Systems 262, 60–77 (2015).
https://doi.org/https://doi.org/10.1016/j.fss.2014.07.008, https://www.
sciencedirect.com/science/article/pii/S0165011414003157, theme: Logic
and Computer Science

27. Rada-Vilela, J.: The fuzzylite libraries for fuzzy logic control (2018), https://
fuzzylite.com/

28. Reznik, L.: Fuzzy controllers handbook: how to design them, how they work. El-
sevier (1997)

29. Sanchez, E.: Solutions in composite fuzzy relation equations: Application to
medical diagnosis in brouwerian logic. In: Dubois, D., Prade, H., Yager,
R.R. (eds.) Readings in Fuzzy Sets for Intelligent Systems, pp. 159–
165. Morgan Kaufmann (1993). https://doi.org/https://doi.org/10.1016/B978-1-
4832-1450-4.50017-1, https://www.sciencedirect.com/science/article/pii/
B9781483214504500171

30. Silva, P., Oliveira, J.N., Macedo, N., Cunha, A.: Quantitative relational mod-
elling with QAlloy. In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering. p. 885–896. ESEC/FSE 2022, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3540250.3549154, https:
//doi.org/10.1145/3540250.3549154

https://doi.org/https://doi.org/10.1016/0165-0114(85)90016-8
https://doi.org/https://doi.org/10.1016/0165-0114(85)90016-8
https://www.sciencedirect.com/science/article/pii/0165011485900168
https://www.sciencedirect.com/science/article/pii/0165011485900168
https://doi.org/10.9734/arjom/2021/v17i430289
https://doi.org/10.1109/TFUZZ.2020.2988848
https://doi.org/10.3390/e24091183
https://www.mdpi.com/1099-4300/24/9/1183
https://www.mdpi.com/1099-4300/24/9/1183
https://doi.org/https://doi.org/10.1016/S0020-7373(75)80002-2
https://www.sciencedirect.com/science/article/pii/S0020737375800022
https://www.sciencedirect.com/science/article/pii/S0020737375800022
https://doi.org/https://doi.org/10.1016/j.fss.2014.07.008
https://www.sciencedirect.com/science/article/pii/S0165011414003157
https://www.sciencedirect.com/science/article/pii/S0165011414003157
https://fuzzylite.com/
https://fuzzylite.com/
https://doi.org/https://doi.org/10.1016/B978-1-4832-1450-4.50017-1
https://doi.org/https://doi.org/10.1016/B978-1-4832-1450-4.50017-1
https://www.sciencedirect.com/science/article/pii/B9781483214504500171
https://www.sciencedirect.com/science/article/pii/B9781483214504500171
https://doi.org/10.1145/3540250.3549154
https://doi.org/10.1145/3540250.3549154
https://doi.org/10.1145/3540250.3549154

Alloy Goes Fuzzy 19

31. Sotudeh, G., Movaghar, A.: Abstraction and approximation in fuzzy temporal log-
ics and models. Formal Aspects Comput. 27(2), 309–334 (2015)

32. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Transactions on Systems, Man, and Cybernetics SMC-
15(1), 116–132 (1985). https://doi.org/10.1109/TSMC.1985.6313399

33. Tamura, S., Higuchi, S., Tanaka, K.: Pattern classification based on fuzzy relations.
IEEE Transactions on Systems, Man, and Cybernetics SMC-1(1), 61–66 (1971).
https://doi.org/10.1109/TSMC.1971.5408605

34. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 632–647. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

35. Tronci, E., Melatti, I., Tofani, A., Magazzeni, D., Intrigila, B., Tronci, E.,
Melatti, I., Tofani, A., Magazzeni, D., Intrigila, B.: A model checking tech-
nique for the verification of fuzzy control systems. In: International Con-
ference on Computational Intelligence for Modelling, Control and Automa-
tion and International Conference on Intelligent Agents, Web Technologies
and Internet Commerce (CIMCA-IAWTIC’06). vol. 1, pp. 536–542 (2005).
https://doi.org/10.1109/CIMCA.2005.1631319

36. Vidal, A.: MNiBLoS: A SMT-based solver for continuous t-norm based log-
ics and some of their modal expansions. Information Sciences 372, 709–730
(2016). https://doi.org/https://doi.org/10.1016/j.ins.2016.08.072, https://www.
sciencedirect.com/science/article/pii/S0020025516306491

37. Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based
logics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) Scalable Uncer-
tainty Management. pp. 633–640. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

38. Winter, M.: Goguen Categories—A Categorical Approach to L-Fuzzy Relations.
No. 25 in Trends in Logic, Springer-Verlag (2007)

39. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965).
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X, https://www.
sciencedirect.com/science/article/pii/S001999586590241X

40. Zhao, S., Li, Z., Chen, Z., Wang, J.: Symbolic verification of fuzzy logic models.
pp. 1787–1789 (09 2023). https://doi.org/10.1109/ASE56229.2023.00087

https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1971.5408605
https://doi.org/10.1109/CIMCA.2005.1631319
https://doi.org/https://doi.org/10.1016/j.ins.2016.08.072
https://www.sciencedirect.com/science/article/pii/S0020025516306491
https://www.sciencedirect.com/science/article/pii/S0020025516306491
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://doi.org/10.1109/ASE56229.2023.00087

	Alloy Goes Fuzzy

