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ABSTRACT

Alloy is a popular language and tool for formal software design. A
key factor to this popularity is its relational logic, an elegant speci-
fication language with a minimal syntax and semantics. However,
many software problems nowadays involve both structural and
quantitative requirements, and Alloy’s relational logic is not well
suited to reason about the latter. This paper introduces QAlloy,
an extension of Alloy with quantitative relations that add integer
quantities to associations between domain elements. Having in-
tegers internalised in relations, instead of being explicit domain
elements like in standard Alloy, allows quantitative requirements
to be specified in QAlloy with a similar elegance to structural
requirements, with the side-effect of providing basic dimensional
analysis support via the type system. The QAlloy Analyzer also
implements an SMT-based engine that enables quantities to be un-
bounded, thus avoiding many problems that may arise with the
current bounded integer semantics of Alloy.
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1 INTRODUCTION

Employing trustworthy software design techniques early in the
development process is crucial to avoid critical faults in later stages.
This process often focuses on structural and architectural modelling,
but there is a trend towards quantitative modelling in the software
sciences. In the words of the editors of [2]:

(...) Today there are many quantitative aspects of system

design: they include timing (whether discrete, continu-

ous or hybrid); probabilistic aspects of success or failure

including cost and reward; and quantified information

flow.

Moreover, data science has emerged as a very important discipline
in computing, which is quantitative by definition. While software
modelling relies mainly on logics and relational algebra, data analy-
sis relies mostly on linear algebra [1]. The need for a linear algebra
of programming has been identified as a possible way to extend
standard software design techniques to such quantitative fields [16].
This work goes in a similar direction.

Alloy [9] is a lightweight formal specification language based
on relational logic, which is supported by an automatic Analyzer1.
The flexibility and simplicity of the language, together with the
quick and intuitive feedback provided by the Analyzer, have led
to the wide adoption of Alloy in the formal validation and veri-
fication of software design models. Unfortunately, while Alloy’s
relational logic has shown to be well-suited to reason about struc-
tural problems, it is rather limited for reasoning about quantitative
models.

Some of these issues arise at the language level. Although inte-
gers in Alloy are a special kind of atom, they mostly act as other
uninterpreted atoms in the relational formalism. This has some
unintuitive consequences due to the uniqueness of elements in sets,
and undermines the ability of Alloy’s rich type system [6] to catch
specification errors. Other issues are due to the associated analysis
procedures. The Analyzer supports either wrap-around semantics
with a necessarily reduced precision due to the SAT-based back-
end, or non-standard semantics that prevent overflows [13] which
has unpredictable side-effects. While work has been developed to
tackle some of these issues, such as supporting multi-relations [19]
or allowing an unbounded integer domain through SMT-based
backends [7, 12, 18], there is no unified and principled approach to
quantitative modelling and analysis based on Alloy.

1This work is based on version 5 of Alloy and still does not consider the temporal
features recently introduced in Alloy 6.
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1 sig Bag {
2 contains : Int one → Product

3 }

4 abstract sig Product {
5 stock : one Int ,
6 weight : one Int
7 }

8 one sig Tea , Coffee , Milk extends Product {}
9 fact {
10 all b : Bag , p : Product | b � contains � p ≥ 0
11 all p : Product | p � weight ≥ 1
12 all p : Product | p � stock ≥ 0 and p � stock ≤ 3
13 Milk � weight = 10
14 Milk � weight > Coffee � weight
15 Coffee � weight = mul[3,Tea � weight]
16 all p : Product |
17 p � stock ≥ (sum b : Bag | b � contains � p)
18 }

Figure 1: SCO model in Alloy

Yet, Alloy offers a particularly interesting setting for such a
quantitative extension, amounting to extending its underlying
Boolean matrices to numeric ones, hiding the numeric calculations
“under the carpet” while keeping its notational elegance at a high-
level. Following on this vision, this paper presents QAlloy and its
Analyzer. QAlloy is a minimal extension to the Alloy language
that internalizes quantities in the relations without sacrificing the
simplicity, flexibility and high-level of abstraction of the Alloy lan-
guage. QAlloy allows relations to be declared as quantitative, and
the relational operators have been generalized to this setting. Inte-
gers are no longer elements of the universe of discourse, but rather
“measures” of relationships. In practice, this means that quantities
can be associated with units of measure, allowing the type checker
to detect dimensional inconsistencies and forcing a disciplined use
of integers when modelling. Internally, this entailed moving from a
formalization based on Boolean matrices to one based on integer
matrices, and adapting the backend to be SMT-based rather than
SAT-based, naturally allowing unbounded quantities.

The rest of the paper is structured as follows. Section 2 presents
QAlloy through amotivating example. Section 3 presents its syntax
and semantics, while Section 4 presents the SMT-based analysis
backend. Section 5 evaluates the flexibility and performance of
QAlloy. Section 6 discusses relevant related work, and Section 7
wraps up the paper with conclusions and directions for future work.

2 MOTIVATING EXAMPLE

Alloy excels at describing and exploring structures. One typical
application is domain modelling, where the goal is to describe
entities and their relationships, and elicit the requirements that
govern them. Take for example a simple (partial) domain model of
a supermarket self-checkout (SCO) system. Some of the relevant
entities in this domain are shopping bags and the different products
on sale. Several quantities, of different units, are also relevant: the
quantity of products each bag contains, the current stock of products
(to issue alerts for stock shortages), and the weight of each product
(to confirm that a given item was placed inside the bag). The first
and second are measured in number of items, while the third is
measured in ounces.

2.1 Quantitative Modelling with Alloy

The SCO can be encoded in Alloy as presented in Figure 1. Entities
can be modelled in Alloy by declaring signatures, which are sets
of elements drawn from the universe of discourse. An optional
multiplicity can be used before the sig keyword to restrict the car-
dinality of the declared signature. Signatures can also be structured
in a hierarchy, with disjoint sub-signatures being declared with key-
word extends. The parent signature can be declared as abstract
if it should not contain elements besides those in its extensions.
This is the case of signature Product which has three singleton
extension sub-signatures, each representing a different product on
sale.

The most natural way to model quantities in Alloy is to specify
them explicitly using integers. Alloy has a pre-defined Int signa-
ture that contains all the integers that can be represented with a
given bit-width using two’s complement representation.

Inside a signature it is possible to declare fields, relations (i.e., sets
of tuples) that connect elements of the parent signature to elements
of other signatures. For each of the above quantities there is a field
in the model that relates the relevant signatures to exactly one Int:
fields weight and stock are binary relations that associate each
Product with the respective weight and stock, and field contains
is a ternary relation that associates each Bag and Product to the
number of items of that product the bag contains.

Constraints are specified using relational logic, an extension of
first-order logic with relational operators. The most used relational
operator is dot join ( � ) that composes two relations. To simplify
the syntax and semantics, in Alloy everything is a relation. In
particular, signatures are unary relations – sets of tuples with a
single element – and scalars and quantified variables are singletons.
This means that operators like dot join can be used not only to
compose two fields, but also variables and signatures with fields.
For example, if p is a product and b a bag, b � contains � p is the
number of items of product p inside bag b.

In our model, a fact contains the various assumptions in our
domain. The first three constraints (lines 10–12) force quantities
to be non-negative, weights to be positive, and impose an upper
limit on the current stock of products. The next three constraints
(lines 13–15) impose (rather) loose restrictions on the weight of the
three different products. The final constraint (lines 16–17) restricts
the total quantity of a product in all bags to be less or equal than
its current stock. One of the drawbacks of using integers in Alloy
is that simple constraints such as these are not trivial to specify.
The problem is that, since all expressions denote sets, repeated
quantities are not properly accounted when using composition. For
example, expression Bag � contains � p collects the quantities of p
in all bags, but if two bags have the same quantity of p that integer
will appear only once in the final set. This means that to compute
this value we need to use the special sum quantifier, that sums all
expressions ranging over a set.

Still related to language support, a more fundamental drawback
is lack of typing for units. Alloy’s type system is quite good at catch-
ing specification errors [6]. For example, expression contains � Bag
would raise a warning since bags cannot contain bags. By using
Int to represent all kinds of quantities, not taking into account the



Quantitative Relational Modelling with QAlloy ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 2: Bogus Alloy counter-example to hasMilk

respective units, the type system does not help in detecting silly
constraints such as all p : Product | p � stock ≥ p � weight.

Alloy models can include run commands to ask for an instance

of the model (a valid assignment to all declared signatures and
fields) or check commands to verify assertions (which returns a
counter-example instance if the assertion is invalid). For decidabil-
ity, the analysis performed by these commands is bounded: the
universe of discourse is finite and its size can be controlled by a
scope imposed on signatures, that defines the maximum number
of elements they can contain. An exception is the scope on Int
that defines the bit-width of the integers created in the universe
of discourse. This means that a check command may fail to find a
counter-example to an invalid assertion. But, since most invalid as-
sertions can be refuted with small counter-examples – the so called
small scope hypothesis – the bounded analysis implemented by the
Alloy Analyzer is still useful in practice to achieve a high-level of
confidence.

Moreover, the Analyzer allows the user to iterate over the in-
stances returned by these commands (to see alternative scenarios or
counter-examples), and also depicts them as graphs for easier com-
prehension2. These features make run commands extremely useful,
since they allow the user to easily explore design alternatives and
discover missing requirements.

Consider, for example the following assertion, that checks if bags
weighting more that 30 oz necessarily contain milk cartons inside.
assert hasMilk { all b : Bag |

(sum p : Product | mul[b � contains � p, p � weight]) > 30

implies b � contains � Milk ≥ 1 }

This assertion is invalid, the “lightest” counter-example being a
bag with three 9 oz coffee bags and two 3 oz tea packets, with total
weight 33 oz. To verify it we could have the following command
that sets a scope of 2 to all signatures and a bit-width 5 for Int3.
check hasMilk for 2 but 5 Int

By executing this command we get the bogus counter-example in
Figure 2, where one bag contains 12 milk cartons, although there
are none in stock. The weight of coffee bags is also not three times
the weight of tea packets, as specified in the fact.

This points to another drawback of Alloy when dealing with
quantities – the default semantics for integer operations is wrap
around, hence the above bogus counter-example (the other bag
2These graphs can also be customised using themes. The instances show in this paper
use custom themes to make them easier to understand.
3Note that the Analyzer automatically grows the scope of Product to 3 to accommo-
date the declared singleton extensions.

in the counter-example had 11 milk cartons, which added to 12
overflows with bit-width 5 and yields a negative number). The
Analyzer currently also implements a semantics that prevents
overflows for integers [13], which would need to be activated to
verify this assertion. However, rerunning the command now yields
no counter-examples. This time the reason is rather pedantic: the
specified bit-width is not big enough to represent the constant 30,
so all instances overflow when evaluating the left-hand-side of the
implication in the assertion and are discarded. This means that
the user has to be very careful when setting the scope for Int, at
the risk of easily missing possible counter-examples. In fact, even
increasing the bit-width to 6, which already is enough to represent
all integer constants in the model, would not suffice to falsify the
assertion, since the “lightest” counter-example bag has total weight
that exceeds 32 oz. In this case we would need a bit-width of at
least 7. This choice is further complicated by the complexities of
the prevent overflows semantics. One might think that the solution
would be to set a rather large bit-width, but unfortunately that is
not viable in many situations. On the one hand, it would slow down
analysis considerably. On the other hand, with a bit-width larger
than 10 the universe would be too large to allow the representation
of ternary relations in the SAT-based analysis engine, rendering
assertion verification impossible.

2.2 Quantitative Modelling with QAlloy

QAlloy improves the handling of integers in Alloy, addressing
all the above drawbacks. First, instead of having an explicit Int
signature, QAlloy internalises integers in relations – while Alloy
relations are matrices of Booleans that determine which tuples be-
long to the relation, in QAlloy it is possible to declare relations
that are matrices of integers, which we will denote by quantitative

relations, where each tuple is paired with a quantity. QAlloy also
generalizes integer operations to work on quantitative relations and
provides a new composition operator that implements matrix mul-
tiplication, allowing easier specification of constraints involving
quantities. Second, this internalisation of integers in quantitative
relations allows them to inherit the type stated in the declaration.
This means that the standard Alloy type system can now detect
meaningless constraints where integers of different units of mea-
sure are compared. Finally, the QAlloy Analyzer uses SMT solvers
instead of SAT solvers in the analysis backend in order to support
unbounded integers. This means that the semantics of integer op-
erations is now straightforward, and the user no longer needs to
worry about determining the correct bit-width.

The SCO can be modelled in QAlloy as shown in Figure 3.
Quantitative relations are declared with keyword int. For example,
contains is now a binary quantitative relation that associates each
bag with the quantity of each product it contains. To model the
weight we first introduce a singleton signature Oz to model the
respective unit, and then declare weight as a binary quantitative re-
lation that relates each product to the quantity of ounces it weights.
It is also possible to declare quantitative subset signatures (declared
with keyword in, likewise in Alloy). That is the case of stock, a
quantitative subset of Product. Quantitative subsets are vectors
that pair each element of the parent signature with a quantity.
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1 sig Bag {
2 int contains : set Product
3 }

4 one sig Oz {}
5 abstract sig Product {
6 int weight : one Oz
7 }

8 one sig Tea , Coffee , Milk extends Product {}
9 int sig stock in Product {}
10 fact {
11 contains ≥ 0 ** (Bag → Product)

12 weight ≥ 1 ** (Product → Oz)

13 stock ≥ 0 ** Product and stock ≤ 3 ** Product
14 Milk;weight = 10 ** Oz

15 Milk;weight > Coffee;weight

16 Coffee;weight = 3 ** (Tea;weight)

17 Bag;contains ≤ stock
18 }

Figure 3: SCO model in QAlloy

In QAlloy, integer operators, such as comparisons (≤ or ≥) and
arithmetic operations (add or mul), have been lifted to work on
quantitative relations, operating entry-wise in the respective matri-
ces or vectors. For example, add implements matrix addition and
mul implements the Hadamard product. In addition, the new quan-

titative composition operator (;) implements matrix multiplication.
These operators can also be used with non-quantitative relations
and signatures, treating them as binary quantitative matrices. In-
teger constants can no longer be used standalone, but only in the
left-hand-side of the new scalar multiplication (**) operator. The
reason for this is to achieve type-safety. For example, to specify a
quantity of 10 oz, one should write 10 ** Oz, while a quantity of
10 tea packets would be specified as 10 ** Tea. A comparison such
as 10 ** Oz = 10 ** Tea yields a type error. To specify a binary
quantitative relation from bags to products with a quantity of 10 in
all possible tuples, one should first compute the Cartesian product
Bag → Product, that attaches a quantity of 1 to all possible pairs,
and than use scalar multiplication to scale up those quantities, as in
10 ** (Bag → Product). The normal Alloy operators, such as
dot join, intersection (&), or union (+), also work with quantitative
relations, implementing a min-max algebra inspired by multi-sets,
which are just a special case of quantitative relations where all
quantities are non-negative. If used only with non-quantitative
relations, these have the same semantics as before, meaning that
Alloy models that do not use integers are retro-compatible with
QAlloy.

The first three constraints (lines 11–13) in Figure 3, specify that
all the quantitative relations in this example are in fact multi-sets,
with non-negative quantities. Like before, the weight is restricted
to be strictly positive and the stock of each product is limited to 3
items. Note that, since comparisons operate entry-wise in quantita-
tive relations we do not need quantifiers to specify these properties,
and can adopt a more terse (point-free) style of specification. The
next three constraints (lines 14–16) specify the weight restrictions
of the different products. To determine the weight of a given prod-
uct we should use the quantitative composition operator: while
Milk � weight determines if milk weights something, Milk;weight
determines its actual weight. Notice that Milk is a vector with a 1 in

Figure 4: QAlloy counter-example to hasMilk

the entry corresponding to milk, while weight is a matrix that only
has positive quantities in the Oz column and the Product rows.
Hence, their multiplication yields a vector that has a single positive
quantity in the Oz entry. The last constraint (line 17) shows the
advantage of the new quantitative composition, enabling a very
elegant specification of the requirement that the total products in
all bags does not exceed the current stock.

Lastly, the hasMilk assertion can be specified as follows.

assert hasMilk { all b : Bag |

b;contains;weight > 30 ** Oz

implies b;contains ≥ 1 ** Milk }

To verify this assertion we could use a check hasMilk for 2: the
SMT backend analysis that implements unbounded integer seman-
tics would immediately return the counter-example in Figure 4. If
we increase the weight to 40 ** Oz the assertion becomes valid
(due to the current limits on the stock) and the QAlloy Analyzer
no longer returns any counter-example.

3 SYNTAX AND SEMANTICS

The proposed language is a minor adaptation of the Alloy language.
Its concrete syntax is presented in Figure 5, with additions high-
lighted (underlined) and references to standalone integer constants
removed.

As shown in the previous section, structure is introduced through
the declaration of non-quantitative (or qualitative) signatures (key-
word sig), which represent sets of uninterpreted atoms. A hierarchy
can be introduced through extension (keyword extends), which
imposes sub-signatures to be disjoint; if a signature is declared as
abstract, all atoms must belong to some sub-signature.

Relations of arbitrary arity (including sets – unary relations) can
be defined over these signatures. Sets are introduced by declaring
inclusion signatures (keyword in) and relations through the decla-
ration of fields within signatures. Such relations can be declared
as quantitative with the keyword int. Over all such declarations,
multiplicity constraints can be enforced (keywords some, lone and
one), controlling the number of tuples they may contain. In quali-
tative relations these multiplicity constraints affect the cardinality
of tuple sets. In quantitative relations, a tuple is present if it has a
nonzero quantity, so multiplicity constraints restrict the number
of tuples with nonzero quantity. For instance, a subset declared as
one int will have exactly one element with an arbitrary nonzero
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spec ·· ··= module qualName [ [ name ,+ ] ] import ∗ paragraph ∗

import ·· ··= open qualName [ [ qualName ,+ ] ] [ as name ]
paragraph ·· ··= sigDecl | factDecl | funDecl | predDecl

| assertDecl | checkCmd
sigDecl ·· ··= [ int ] [ abstract ] [ mult ] sig name ,+

[ sigExt ] { intDecl , ∗ } [ block ]
sigExt ·· ··= extends qualName | in qualName [ + qualName ] ∗

mult ·· ··= lone | some | one
decl ·· ··= [ disj ] name ,+ : [ disj ] expr
intDecl ·· ··= [ int ] decl
factDecl ·· ··= fact [ name ] block
assertDecl ·· ··= assert [ name ] block
funDecl ·· ··= fun name [ [ decl , ∗ ] ] : expr { expr }
predDecl ·· ··= pred name [ [ decl , ∗ ] ] block
expr ·· ··= const | qualName | @name | this | unOp expr

| expr binOp expr | expr arrowOp expr
| expr [ expr , ∗ ] | expr [ ! | not ] compareOp expr
| expr ( => | implies ) expr else expr
| quant decl ,+ blockOrBar | ( expr ) | block
| { decl ,+ blockOrBar }

const ·· ··= none | univ | iden
unOp ·· ··= ! | not | no | mult | set | ~ | * | ^ | #

| drop | number **
binOp ·· ··= || | or | && | and | <=> | iff | => | implies

| & | + | − | ++ | <: | :> | � | ;
| add | sub | mul | div | rem

arrowOp ·· ··= [ mult | set ] → [ mult | set ]
compareOp ·· ··= in | = | != | < | ≤ | > | ≥
letDecl ·· ··= name = expr
block ·· ··= { expr ∗ }
blockOrBar ·· ··= block | | expr
quant ·· ··= all | no | mult
checkCmd ·· ··= check qualName [ scope ]
scope ·· ··= for number [ but typescope ,+ ] | for typescope ,+

typescope ·· ··= [ exactly ] number qualName
qualName ·· ··= [ this/ ] ( name/ ) ∗ name

Figure 5: Concrete syntax of the QAlloy language.

quantity. Some constant relations are also available, namely none
(empty set), univ (non-quantitative set of all atoms), and iden
(identity relation).

Relational expressions are built using typical relational opera-
tors adapted to the quantitative context. The formal semantics for
a kernel of QAlloy expressions is given by the quantity function

4

defined inductively over relational expressions in Figure 6. Let A
be the universe of atoms. A binding is a function that for every free
relation (signatures and fields) r and tuple 𝑡 with appropriate arity
returns its quantity, i.e., if 𝑠 (r, 𝑡) = 𝑞, 𝑡 has quantity 𝑞 in r . Then,
the quantity function of a relational expression Γ under binding 𝑠
is given by JΓK𝑠 . We say that a tuple 𝑡 belongs to Γ (under binding
𝑠) if JΓK𝑠 (𝑡) ≠ 0. The universe of atoms A is calculated from the
scopes defined in the command under analysis. Based on the com-
mand scope and on their type, each declared signature and field is
assigned an upper-bound onA, the set of tuples that may belong to
a relation. The upper-bound of any relational expression can then
be derived by applying the operators at the upper-bound level. For
instance, if relations r and s have upper-bounds {(A0),(A1)} and
{(B1),(B2)}, respectively, then the union r+s has upper-bound

4We abstain from using the more common term “multiplicity function” to avoid confu-
sion with Alloy’s multiplicity constraints over unique atom tuples.

{(A0),(A1),(B0),(B1)}. We denote the upper-bound of a rela-
tional expression Γ by ⌈Γ⌉.

QAlloy provides two different classes of operations over quanti-
tative relations. The first interprets quantitative relations as multi-
relations that also allow negative quantities (following [4]), which
degenerates back into regular relational operations when quantities
are restricted to 0 or 1. In this class we have the union (+), intersec-
tion (&), and difference (−) operations, that represent, respectively,
the entry-wise nonzero maximum, minimum, and subtraction. We
denote the nonzero maximum and minimum as max0 and min0,
respectively, and define them as:

min0 (𝑥, 0) = 𝑥

min0 (0, 𝑦) = 𝑦

min0 (𝑥,𝑦) = min(𝑥,𝑦)

max0 (𝑥, 0) = 𝑥

max0 (0, 𝑦) = 𝑦

max0 (𝑥,𝑦) = max(𝑥,𝑦)
In the second class we have the arithmetic Alloy operations

add, sub, mul, div, and rem, which are extended to represent the
entry-wise addition, subtraction, multiplication, and integer division
and remainder. Scalar multiplication (**) between an integer and a
relation is also available.

Two versions of the quintessential relational composition are also
available. In general, a tuple is in the composition of two relations
Γ and Δ if there is a middle element to which Γ has an outgoing
transition and Δ an incoming transition. The dot join ( � ) generalizes
the Boolean version, and the quantity of a transition from Γ to Δ
through a middle common element is the nonzero minimum of
the incoming and outgoing transitions; the quantity of a tuple in
Γ �Δ is the nonzero maximum among all such possible transitions.
The quantitative join (;) implements matrix multiplication, and the
quantity of a transition through a middle element is the product
of the quantities of the incoming and outgoing transitions; the
quantity of a tuple in Γ;Δ is the sum of all such transitions. Note
that iden is the neutral element of ;, but for � it is only the neutral
element when the other argument is non-quantitative.

The Cartesian product (→) of any two relations multiplies the
quantities of the originating tuples. A binary relation can also be
reversed (~), preserving the quantities of the tuples. The transitive
closure (^) of a binary relation is defined through the iterative
application of dot join, and the reflexive transitive closure (*) through
the union of the transitive closure with iden. Derived operators,
such as override (++) and domain (<:) and range (:>) restriction
have the same definition as in Alloy. Relations can also be defined
by comprehension. Any relation can also be dropped (drop) to its
non-quantitative representation, where all nonzero quantities are
mapped to 1.

Lastly, the cardinality operator (#) is the summation of all quanti-
ties in a relation Γ, with the resulting quantity being attached to all
tuples in its upper-bound ⌈Γ⌉, to obtain a constant that preserves
units of measure. Notice that, other than in the scalar multiplication,
integer constants are no longer valid in QAlloy. This is part of our
vision towards the disciplined use of quantities. In particular, if the
total quantity of #Γ is 𝑞, the resulting expression is the same as
𝑞** ⌈Γ⌉.

Relations can then be combined into formulas. The formal se-
mantics for a kernel of QAlloy formulas is presented in Figure 7.
For a binding 𝑠 , the semantics of a formula 𝜙 is given by 𝑠 |= 𝜙 .
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J𝑟K𝑠 (𝑡) = 𝑠 (𝑟, 𝑡)
J𝑥K𝑠 ((𝑎)) = 𝑠 (𝑥,(𝑎))
JunivK𝑠 ((𝑎)) = 1
JnoneK𝑠 ((𝑎)) = 0

JidenK𝑠 ((𝑎,𝑏)) =

{
1 if 𝑎 = 𝑏

0 otherwise
JΓ + ΔK𝑠 (𝑡) = max0 (JΓK𝑠 (𝑡), JΔK𝑠 (𝑡))
JΓ & ΔK𝑠 (𝑡) = min0 (JΓK𝑠 (𝑡), JΔK𝑠 (𝑡))

JΓ − ΔK𝑠 (𝑡) =

{
0 if JΓK𝑠 (𝑡) = 0
JΓK𝑠 (𝑡) −min(JΓK𝑠 (𝑡), JΔK𝑠 (𝑡)) otherwise

Jadd[Γ,Δ]K𝑠 (𝑡) = JΓK𝑠 (𝑡) + JΔK𝑠 (𝑡)
Jsub[Γ,Δ]K𝑠 (𝑡) = JΓK𝑠 (𝑡) − JΔK𝑠 (𝑡)
Jmul[Γ,Δ]K𝑠 (𝑡) = JΓK𝑠 (𝑡) × JΔK𝑠 (𝑡)
Jdiv[Γ,Δ]K𝑠 (𝑡) = JΓK𝑠 (𝑡) / JΔK𝑠 (𝑡)
Jrem[Γ,Δ]K𝑠 (𝑡) = JΓK𝑠 (𝑡) % JΔK𝑠 (𝑡)
J𝑛 ** ΓK𝑠 (𝑡) = 𝑛JΓK𝑠 (𝑡)
JΓ � ΔK𝑠 ((𝑎1, . . .,𝑎𝑛−1,𝑏2, . . .,𝑏𝑚)) = max

𝑐∈A
0 (min0 (JΓK𝑠 ((𝑎1, . . .,𝑎𝑛−1,𝑐)), JΔK𝑠 ((𝑐,𝑏2, . . .,𝑏𝑚))))

JΓ ; ΔK𝑠 ((𝑎1, . . .,𝑎𝑛−1,𝑏2, . . .,𝑏𝑚)) =
∑

𝑐∈A
(JΓK𝑠 ((𝑎1, . . .,𝑎𝑛−1,𝑐)) × JΔK𝑠 ((𝑐,𝑏2, . . .,𝑏𝑚)))

JΓ → ΔK𝑠 ((𝑎1, . . .,𝑎𝑛,𝑏1, . . .,𝑏𝑚)) = JΓK𝑠 ((𝑎1, . . .,𝑎𝑛)) × JΔK𝑠 ((𝑏1, . . .,𝑏𝑚))
J~ΓK𝑠 ((𝑎,𝑏)) = JΓK𝑠 ((𝑏,𝑎))
J^ΓK𝑠 ((𝑎,𝑏)) = max0 (JΓK𝑠 ((𝑎,𝑏)), JΓ � ΓK𝑠 ((𝑎,𝑏)), JΓ � Γ � ΓK𝑠 ((𝑎,𝑏)), . . .)

J{ 𝑥1 : Γ1, . . .,𝑥𝑛 : Γ𝑛 | 𝜙}K𝑠 ((𝑎1, . . ., 𝑎𝑛)) =

{
JΓ1K𝑠 ((𝑎1)) × . . . × JΓ𝑛K𝑠 ((𝑎𝑛)) if 𝑠′ |= 𝜙

0 otherwise
where 𝑠′ = 𝑠 ⊕ (𝑥1,(𝑎1)) ↦→ JΓ1K𝑠 ((𝑎1)) ⊕ . . . ⊕ (𝑥𝑛,(𝑎𝑛)) ↦→ JΓ𝑛K𝑠 ((𝑎𝑛))

Jdrop ΓK𝑠 (𝑡) =

{
0 if JΓK𝑠 (𝑡) = 0
1 otherwise

J#ΓK𝑠 (𝑡) =


∑

𝑡 ′∈⌈Γ⌉
JΓK𝑠 (𝑡 ′) if 𝑡 ∈ ⌈Γ⌉

0 otherwise

Figure 6: Semantics of QAlloy relational expressions (A is the declared universe, 𝑛 and𝑚 the arity of Γ and Δ, respectively)

𝑠 |= Γ in Δ ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≠ 0 ⇒ JΔK𝑠 (𝑡) ≠ 0 ∧ JΓK𝑠 (𝑡) ≤ JΔK𝑠 (𝑡)
𝑠 |= Γ ≤ Δ ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≤ JΔK𝑠 (𝑡)
𝑠 |= Γ ≥ Δ ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≥ JΔK𝑠 (𝑡)
𝑠 |= Γ < Δ ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≤ JΔK𝑠 (𝑡) ∧ ∃𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) < JΔK𝑠 (𝑡)
𝑠 |= Γ > Δ ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≥ JΔK𝑠 (𝑡) ∧ ∃𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) > JΔK𝑠 (𝑡)
𝑠 |= some Γ ≡ ∃𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≠ 0
𝑠 |= lone Γ ≡ ∀𝑡1, 𝑡2 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡1) ≠ 0 ∧ JΓK𝑠 (𝑡2) ≠ 0 ⇒ 𝑡1 = 𝑡2
𝑠 |= not 𝜙 ≡ 𝑠 ̸ |= 𝜙

𝑠 |= 𝜙 and𝜓 ≡ 𝑠 |= 𝜙 ∧ 𝑠 |= 𝜓

𝑠 |= all 𝑥 : Γ | 𝜙 ≡ ∀𝑡 ∈ ⌈Γ⌉ · JΓK𝑠 (𝑡) ≠ 0 ⇒ 𝑠 ⊕ (𝑥, 𝑡) ↦→ JΓK𝑠 (𝑡) |= 𝜙

Figure 7: Semantics of QAlloy formulas

The fundamental atomic formula is the inclusion test between two
relations (in). In multi-relations with negative quantities [4], Γ in Δ
tests whether every tuple in Γ exists in Δ and with a smaller, or
equal, quantity. The arithmetic comparison operators ≤ and ≥ are

extended to the entry-wise comparison, while < and > requires that
at least one entry is strictly less/greater. The other atomic formulas
are multiplicity constraints over the number of atoms in a relation
(again, regardless of their quantity). Formulas are then combined
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with regular Boolean operators not/!, and/&&, or/||, implies/=>
or iff/<=>, or universal (all) and existential (some) first-order
quantifications. In the latter, quantified variables are assigned their
quantity in the quantification domain.

One characteristic of this semantics is that, when restricted to
qualitative relations, it degenerates into that of standard Alloy.

Theorem 3.1 (Alloy/QAlloy eqivalence). A model without

quantitative aspects (one that is included in the intersection of both

languages – i.e., without quantitative relations and operators, refer-

ences to Int, standalone integer constants, and integer operators) has
the same semantics in Alloy and QAlloy.

Proof. Without quantitative relations all quantities in tuples
will be restricted to 0 or 1 and all non-quantitative operators pre-
serve such binary quantities, having the same semantics as in Alloy
(with 1 denoting membership of the respective tuple to the relation).
Operators +, &, − and in over non-quantitative relations correspond
to their regular set version [4]. The inner min0 in � returns 1 when-
ever there is a ingoing and outgoing transition to a middle element,
and the outermost max0 will return 1 whenever there is such a tran-
sition and 0 otherwise. Operator → multiplies quantities, resulting
in 1 when the tuple is present in the two relations, ~ preserves the
binary quantities, and ^ has the standard definition using � . Multi-
plicity constraints and quantifications only test whether quantities
are different from 0. The constraints derived from the signature
and field declarations are also preserved in QAlloy. □

Moreover, even without having an explicit Int signature we
can also show that QAlloy is in fact strictly more expressive than
regular Alloy, thus completely superseding it for qualitative and
quantitative modelling.

Theorem 3.2 (Alloy/QAlloy expressiveness). AnyAlloymodel

can be translated into a semantically equivalent QAlloy model.

Proof. An explicit Integer signature with the same bounded
semantics as Alloy’s Int can be defined in QAlloy as follows.
Declare signature Integer and impose a total order over it using
the standard util/ordering module. Declare a singleton signa-
ture One that represents an abstract unit for integers. Then, declare
a quantitative field value within Integer that points to One. Im-
pose through a fact that the quantity of value of every Integer
corresponds to its position in the total order. If the scope of Int
in Alloy is 𝑛 the scope of the equivalent Integer in QAlloy
should be 2𝑛 and the value of the first Integer in the total or-
der should be set as first;value = (2𝑛−1 − 1)** One. A macro
toInteger[q] can be defined that converts any quantity q of type
One back to respective Integer atom, taking overflows into con-
sideration. It picks the Integer whose value is the addition of
first;value with sub[q,first;value] modulo 2𝑛 . Any wrap
around arithmetic operation over Integer can now be defined by
first performing the respective (unbounded) operation on the re-
spective value and then converting back with toInteger. Any
Int standalone constant c in the original Alloy model can be
represented by the equivalent toInteger[c ** One] in QAlloy.
Finally, any summation sum x : A | E can be replaced by the
equivalent A;{x : A, i : E | no none};value. □

Figure 8: QAlloy workflow

4 QUANTITATIVE ANALYSIS

QAlloy is supported by an Analyzer that extends that of regular
Alloy. The overview of the analysis process is depicted in Figure 8
and presented in the rest of this section.

4.1 Quantitative Kodkod

Quantitative Kodkod problems. Kodkod [21] is the relational
model finder behind Alloy, and is responsible for verifying the
satisfiability of the input problem and further determine an instance
solution, when satisfiable. A Kodkod problem is essentially a dec-
laration of relations through lower- and upper-bounds – which
specify tuples that must be present or absent in the relation, respec-
tively – and a relational formula that bindings over such relations
must guarantee. The Analyzer translates Alloy specifications to
Kodkod problems by translating the syntactic features of the lan-
guage into additional constraints. Kodkod then interprets each
declared relation as a Boolean matrix, where each tuple between
the lower- and upper-bound is assigned a SAT variable denoting
its presence in the relation. Relational operators are computed as
matrix operations and formulas expanded to Boolean connectives,
with quantifiers unrolled in the finite universe of discourse. The
process is highly optimised by resorting to special data-structures
to represent the (usually quite sparse) matrices and quantifier-free
Boolean formulas.

Achieving quantitative analysis requires dealing with values
beyond the Boolean realm, which led to the development of a quan-
titative Kodkod extension. First, Kodkod’s AST was extended to
consider quantitative relations and the new operators supported
by QAlloy. Then, in order to represent quantitative relations, the
underlying sparse sequence – a sequence that may or may not have
contiguous flat indices, storing only non-false values – used to rep-
resent Boolean matrices is adapted to support integer values in a
similar fashion, now describing numeric matrices.

Definition 4.1. Let 𝑅 be an 𝑛-ary quantitative relation with lower-
bound 𝐿 and upper-bound𝑈 over the universe A = {𝑎0, 𝑎1, .., 𝑎𝑘 }.
𝑅 is uniquely characterized by a numeric sparse matrix specified as
follows:

𝑅 [𝑖1, .., 𝑖𝑛] =


trueVar () if (𝑎𝑖1 , .., 𝑎𝑖𝑛 ) ∈ 𝐿

freshVar () if (𝑎𝑖1 , .., 𝑎𝑖𝑛 ) ∈ 𝑈 − 𝐿

0 otherwise

where 𝑖1, .., 𝑖𝑛 ∈ [0, 𝑘], freshVar () declares a fresh integer variable,
and trueVar () declares a fresh integer variable by additionally im-
posing that its value must be nonzero.

Such representation means that every 𝑛-ary relation is encoded
as amatrix of𝑛 dimensions, each of size |A| (e.g., a binary relation is
described by a |A| × |A| square matrix). Notice that unlike Kodkod
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where a tuple in the lower-bounds is simply assigned the value
𝑡𝑟𝑢𝑒 , in the quantitative setting the presence of a tuple only entails
that it will have a nonzero value, but it will still be a free variable.
Following the original flat index mechanism [20], an entry [𝑖1, .., 𝑖𝑛]
of 𝑅 is mapped into the index

∑𝑛
𝑗=1 (𝑖 𝑗 × |A|𝑛− 𝑗 ) on the respective

sparse sequence 𝑟 . Thus, any tuple over A is uniquely identified
by its index. In this setting, if 𝑟𝑖 = 𝑞 with 𝑞 ∈ Z \ {0}, the tuple
corresponding to the flat index 𝑖 occurs in 𝑅 with the quantity 𝑞

associated.
For relations not declared as quantitative, this definition is nar-

rowed to represent Boolean matrices within the Z domain.

Definition 4.2. Let 𝑅 be an 𝑛-ary qualitative relation with lower-
bound 𝐿 and upper-bound𝑈 over the universe A = {𝑎0, 𝑎1, .., 𝑎𝑘 }.
𝑅 is uniquely characterized by a numeric sparse matrix specified as
follows:

𝑅 [𝑖1, .., 𝑖𝑛] =


1 if (𝑎𝑖1 , .., 𝑎𝑖𝑛 ) ∈ 𝐿

binaryVar () if (𝑎𝑖1 , .., 𝑎𝑖𝑛 ) ∈ 𝑈 − 𝐿

0 otherwise

where 𝑖1, .., 𝑖𝑛 ∈ [0, 𝑘] and binaryVar () declares a fresh integer
variable, constrained to be {0, 1}-valued.

Combining such structures through the existing Boolean opera-
tors alongside the expected arithmetic and inequality operations
over integers, quantitative properties can be conveniently managed
through linear algebra. As an example, consider the implementa-
tion of quantitative composition ;, which is derived directly from
the Boolean matrix composition by swapping ∧ by × and ∨ by +,
respectively, amounting to the multiplication of matrices.

Quantitative analysis. Given a Boolean formula, Kodkod deploys
off-the-shelf SAT solvers to find a valuation for the free SAT vari-
ables. To support integer variables in quantitative analysis, the
process is adapted to integrate SMT solvers instead. Every for-
mula is directly translated into assertions in the assertion stack

that defines the SMT specification to be fed into an off-the-shelf
SMT solver. The generated specifications abide to the SMT-LIB
format [3]. Consequently, any solver that conforms to this standard
can then be integrated and used by the QAlloy Analyzer. For
instance, consider the expression 𝑅 = add[𝑆,𝑇 ], where 𝑅, 𝑆 and 𝑇
are quantitative relational expressions, and 𝑅 contains the result of
performing matrix addition between 𝑆 and 𝑇 . Such expression is
translated into an SMT specification by pushing assertions of the
shape (assert (= 𝑟𝑖 (+ 𝑠𝑖 𝑡𝑖))) to the stack, for every index 𝑖
of the sparse sequences, with 𝑟𝑖 , 𝑠𝑖 and 𝑡𝑖 being declared as integer
function symbols.

SMT solvers perform verification according to a specific back-
ground theory. In this context, analysis will be performed with
the Theory of Integers, in particular, considering the logic fragment
QF_NIA (Quantifier-free non-linear integer arithmetic), the smallest
fragment able to cover the kind of function symbols and assertions
in the generated specification. After solving, a judgement will be
obtained that will be either: unsatisfiable, when the solver is unable
to find a solution to the model; unknown when the solver is unable
to reach a conclusion; and satisfiable when the solver is able to
determine a solution to the SMT specification. In the last case, the

SMT variables are interpreted back as a binding over the free rela-
tions of the original quantitative Kodkod problem, representing a
quantitative instance.

4.2 Optimization

Although quantitative properties are the main focus of this work,
qualitative relations and constraints are frequently used evenwithin
quantitative models. Therefore, instead of using linear algebra over
integer values exclusively, by statically identifying qualitative rela-
tional expressions, it is possible to encode some constraints over the
Boolean domain without loss in expressiveness, thus reducing the
load on the solver. To this purpose, we implement in quantitative
Kodkod a simple type inference mechanism that registers whether
a relational expression is necessarily qualitative. This is done by
registering which relations are not declared as int, and how the
different relational operators affect this classification. For example,
intersecting two qualitative expressions yields a qualitative one,
but intersecting qualitative and quantitative expressions yields a
quantitative one.

This typing information is then used to choose the best imple-
mentation for each operator. First, observe that a binary integer
value is exactly described by a Boolean variable, the same kind of
value used in Definition 4.2 to characterize qualitative relations.
Then, operations closed under the Boolean domain can be described
precisely as in the original Kodkod implementation by taking ad-
vantage of Boolean constructs. Note that such Boolean values can
also be easily lifted into the integer domain when such representa-
tion is required. The quantitative Kodkod extension supports both
kinds of structure in a way that allows convenient processing of
the problem at hand.

Besides the Boolean operators of standard Kodkod, newly added
operations, namely those used in numeric expressions, can also be
optimized into Boolean expressions. Take for example theHadamard
product between two relational expressions 𝑅 = mul[𝑆,𝑇 ]. Instead
of simply multiplying each entry 𝑟𝑖 = 𝑠𝑖 × 𝑡𝑖 , by observing that
𝑟𝑖 = 𝑠𝑖 ∧ 𝑡𝑖 when 𝑆 and 𝑇 represent non-quantitative relational ex-
pressions, the implementation of this expression can be optimized
as follows, for every index 𝑖 within the respective sparse sequences:

𝑟𝑖 =


𝑠𝑖 ∧ 𝑡𝑖 if 𝑠𝑖 , 𝑡𝑖 ∈ B
𝑠𝑖 ? 𝑡𝑖 : 0 if 𝑠𝑖 ∈ B, 𝑡𝑖 ∈ Z
𝑡𝑖 ? 𝑠𝑖 : 0 if 𝑠𝑖 ∈ Z, 𝑡𝑖 ∈ B
𝑠𝑖 × 𝑡𝑖 otherwise

Notice that this implementation also optimizes the case where only
one of the operands is qualitative.

Finally, at the SMT level, Boolean function symbols and expres-
sions over them will be preferred wherever the expressiveness of
their integer counterpart is not required, resulting in faster response
times.

4.3 QAlloy Analyzer

The QAlloy Analyzer5 parses the provided model according to
the language extension defined in the previous section, including

5QAlloy and all models used in the evaluation are available at https://github.com/pf7/
QAlloy.

https://github.com/pf7/QAlloy
https://github.com/pf7/QAlloy
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the typing rules for the new operators, which ensures that the us-
age of integers is well-typed, as motivated earlier. Moreover, such
specification is processed adequately to be handled by the updated
relational model finder, i.e., it is transformed into a quantitative
Kodkod problem. The constraints generated from the syntactic
structures of Alloy when creating the Kodkod formula are pre-
served by QAlloy (namely, hierarchy and typing constraints), pre-
serving the semantics of non-quantitative signatures and fields. As
before, an instance is returned by the quantitative Kodkod anal-
ysis when there is an instance/counterexample to the run/check
command that was executed.

The various components of the Analyzer were adapted to the
quantitative context. Namely, the Visualizer and Evaluator now
accommodate the quantitative Alloy instances in order to faithfully
present the outcome to the designer. For quantitative signatures
and fields, the graph perspective of the Visualizer was adapted
to display the tuple quantities. For instance: for each subset s,
the quantity q associated with each atom is displayed as s: q
inside the respective node; the quantity q associated with each
tuple of a field f is displayed in the respective edge as f: q. For
non-quantitative relations, the Visualizer still follows the original
Alloy implementation. This graph visualization is illustrated in
Figure 4. To further inspect each obtained instance, the user can
also take advantage of the Evaluator by specifying expressions
written with the updated language, which will be measured over
the quantitative instance in question.

5 EVALUATION

This section presents our evaluation of QAlloy, focusing on the
expressiveness of the language and the performance of the Ana-
lyzer.

5.1 QAlloy Examples

To evaluate the expressiveness of QAlloy, we have written various
examples from distinct domains, inspired by previous attempts at
quantitative modelling using regular Alloy6.

Supermarket self-checkout (SCO). This is the running example
already presented throughout the paper. Quantitative relations are
used to model stock quantities and weights. It has two assertions
that check whether the quantities of certain items can be inferred
from the total weight of the bag: one is invalid (hasMilk) and an-
other valid (hasNoMilk). Signature scopes do not affect the validity
since only the number of bags varies. Previous work has modelled
similar shopping bags in Alloy using multi-sets where edges were
reified as model atoms [19].

Flow networks (FlowA and FlowL). A model of flow networks,
directed graphs with limited capacities on the edges and distinct
source and sink nodes. The (valid) assertion tests whether the flow
produced by the source is the same as that consumed by the sink.
Model size determines the number of nodes in the network. There
are two different QAlloy models of this example: FlowA abstracts
the unit of what is flowing through the network, which results in a
more cumbersome specification, requiring the usage of operator #

6Available at https://github.com/pf7/QAlloy/tree/master/org.alloytools.alloy.extra/
extra/models/examples/qalloy.

to ensure type compatibility; FlowL explicitly declares the flow in
liters, which makes the model more elegant, but increases the arity
of the affected quantitative relations by one.

Graph analysis (Graph). Amodel for analysing quantitative prop-
erties of vertex-labelled graphs. Three (valid) assertions verify prop-
erties regarding the counting of labels depending of the shape
of the graph, namely arbitrary graphs (Counting), forest graphs
(ForestInDegree), and connected graphs (ConnectedInDegree).
The scope determines the number of nodes in the graph. Alloy
has traditionally been used to analyse graph problems, from more
abstract problems (such as those packaged with the Analyzer) to
more concrete ones (e.g., reasoning about student submissions in
automated assessment systems [11]).

Electronic purse (Bank). A model of an electronic purse and as-
sociated transference operations. Quantitative relations are used
to model coin quantities. The (valid) check tests whether the total
number of coins is always preserved (Preserves), whose scope
controls the number of banks, clients and transfer orders. Previ-
ous work has modelled such electronic purses in Alloy to check
security properties [17]. In that work, rather than using integers
to model coin quantities, coins were modelled as a signature. This
alternative prevents some issues of Alloy’s integers, but is still
affected by scope problems (the number of available coins) and
makes specification more complex (even though coins are fungible,
since each coin is a different element of the domain, additional
constraints must be imposed to avoid coin sharing, for example).

5.2 Performance Evaluation

This section aims to answer the following research questions:
RQ1 How does the performance of QAlloy compare to the

bounded integer implementation of regular Alloy?
RQ2 Which SMT solver is more efficient in the analysis of

quantitative relational models?
RQ3 What is the impact of identifying Boolean sub-expressions

and exploiting them using the optimization from Section 4.2?
To answer these questions, we executed the commands of the

examples under various configurations and scopes. The summary
of the results is shown in Table 1. To answer RQ1, we addition-
ally modelled all the examples presented in the previous section in
plain Alloy7. Here, an additional scope on integers is required, and
we executed the models using the MiniSAT solver for scopes that
allowed a reasonable number of integers without completely en-
cumbering the Analyzer (columns Alloy in Table 1). For RQ2, we
executed the commands with different SMT backends, namely Z3,
MathSAT, CVC4 and Yices (columns QAlloy in Table 1). For RQ3,
we also ran the commands without the optimizations described
in Section 4.2 enabled using MathSAT, the SMT solver with the
best overall performance in RQ2 (columns QAlloy-NO in Table 1).
All commands were executed on a machine equipped with 8GB
of RAM and an octa-core Intel i7 CPU of 2.5GHz frequency and
x86_64 architecture; both Alloy and QAlloy ran with 768MB of
maximum memory and 16384k of maximum stack size, with Al-
loy having prevent overflows set to On. Versions MiniSAT 2.2.1, Z3

7Also available in the GitHub repository.

https://github.com/pf7/QAlloy/tree/master/org.alloytools.alloy.extra/extra/models/examples/qalloy
https://github.com/pf7/QAlloy/tree/master/org.alloytools.alloy.extra/extra/models/examples/qalloy
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Table 1: Evaluation results (in ms).

Model Command Result Alloy (MiniSAT) QAlloy QAlloy-NO
8 Int 10 Int Z3 MathSAT CVC4 Yices MathSAT

SCO

run Sat 253 2650 41 16 39 12 27
hasMilk Sat 266 3300 43 19 66 12 176
hasNoMilk Unsat 193 2863 47 42 131 17 120

FlowA
run for 4 but exactly 3 Node Sat 335 4410 85 49 335 325 40

OutEqualsIn for 3 Unsat 1700 3740 184 33 364 726 79
OutEqualsIn for 4 Unsat timeout timeout 13400 108 1800 34700 333

FlowL

run for 4 but exactly 3 Node Sat 335 4410 114 46 465 69 54
OutEqualsIn for 3 Unsat 1700 3740 202 28 179 165 49
OutEqualsIn for 4 Unsat timeout timeout 10800 66 327 1600 115
OutEqualsIn for 5 Unsat timeout timeout timeout 155 614 timeout timeout

Graph

run for 5 Sat 23 34 209 99 640 38 583
Counting for 3 Unsat 3600 24100 2400 73 35100 timeout timeout
Counting for 4 Unsat timeout timeout 31200 245 timeout timeout timeout
Counting for 5 Unsat timeout timeout timeout 893 timeout timeout timeout
run Forest for 5 Sat 16 41 144 126 717 43 timeout

ForestInDegree for 3 Unsat 50 279 135 65 290 608 12500
ForestInDegree for 4 Unsat 385 2420 1300 730 2600 timeout timeout
ForestInDegree for 5 Unsat 2200 15600 29500 22200 46100 timeout timeout
run Connected for 5 Sat 13 34 401 timeout 1000 50 timeout

ConnectedInDegree for 3 Unsat 61 501 195 158 335 18700 7400
ConnectedInDegree for 4 Unsat 291 2200 1700 31700 2400 timeout timeout
ConnectedInDegree for 5 Unsat 2400 15500 51900 timeout 27300 timeout timeout

Bank

run Sat 12 814 68 27 197 105 86
Preserves for 3 but 2 Bank Unsat 4300 timeout 2000 150 3100 timeout 3000
Preserves for 4 but 2 Bank Unsat 15400 timeout 28100 1900 42700 timeout timeout
Preserves for 5 but 2 Bank Unsat 53000 timeout timeout 10400 timeout timeout timeout

4.8.12, MathSAT 5.6.6, CVC4 1.8, Yices 2.6.4 of the solvers were
used. Timeout was set at 1 minute.

Regarding RQ1, QAlloy is competitive with the bounded ver-
sions in Alloy. With 8 bits (256 integers), Alloy is already out-
performed by QAlloy in three of the examples, while in the other
(Graph) it is in the same order of magnitude with 10 bits. Recall
that QAlloy has the added advantage of performing the analysis
over an unbounded integer domain, while Alloy is limited to the
bit-width defined by the user, which can lead to faulty results if not
big enough, as discussed in Section 2.

Considering RQ2, although MathSAT features the best over-
all performance, there is at least one command where each of the
different solvers has the best performance. Thus, the QAlloy Ana-
lyzer benefits from supporting a wide range of solvers that abide
to the SMT-LIB standard. The least performant overall is Yices,
with many timeouts, although still competitive when solving run
commands. Note that the generated SMT problems can be in the
QF-NIA fragment which is not decidable. However, we have not
experienced this limitation in practice: several commands run in
the evaluation are in this fragment, but they are all solved by at
least one of the SMT solvers under the 1 minute timeout.

Lastly, for RQ3 we also executed the commands without the
optimization described in Section 4.2 with MathSAT. Without
this optimization, the tool struggles to find a timely answer for

some commands, but with the optimization enabled, commands can
execute orders of magnitude faster (e.g., ForestInDegree for 3
is almost 200x faster with the optimization enabled).

6 RELATEDWORK

Previous research has attempted to support (positive)multi-relations
in formal modelling, but only through shallow embeddings as li-
brary support. For instance, Hayes [8] proposed a binary multi-
relations library for Z, implementing the quantitative version of
composition (there simply dubbed composition). More closely re-
lated to QAlloy, Sun et al. [19] proposed an Alloy library for
multi-sets and binary multi-relations. This is based on the category-
theoretical framework of spans, where each link is reified as an
index (an index-based approach to multi-relations, in contrast to a
numeric-based that assigns multiplicities to elements). In practice,
links are reified into Alloy atoms, which means they are bounded
by the analysis scope. Two composition operators are available,
quantitative composition (there dubbed multijoin) and the ordinary
Boolean dot join that only deals with reachability and retains a
single link. Our dot join operator extends the behaviour of the or-
dinary join, exhibiting the standard behaviour when restricted to
Boolean relations.

Various authors have tried to replace Alloy’s SAT-based backend
by a SMT-based one. AlloyPE, proposed by El Ghazi et al. [7],
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provided the first translation of Alloy’s relational logic into SMT.
CRS, proposed by Meng et al. [12], puts forward an alternative
translation that relies on an extended theory of finite relations.
Both allow the analysis of Alloy models without requiring the
finitization (i.e., assigning scopes) of signatures (including integers).
The evaluation in [12] has shown that CRS, compared to AlloyPE,
is able to terminate in more cases and is more robust. Although CRS
is able to analyse Alloy models with unbounded integer semantics,
the current version does not fully support the cardinality operator
(#) nor the sum quantifier (the cardinality operator can be used only
in comparisons with constants). Unfortunately, this does not allow
the encoding of most of our examples, and that was the reason why
we did not include the comparison against CRS as a specific research
question in our evaluation. Our only example that does not use #
nor sum is Bank. In this example, CRS is much slower than QAlloy:
the run takes 900ms and the check Preserves more than 4min
(both with unbounded scopes), while in QAlloy with MathSAT the
former takes 27ms (with the default scope 3) and the latter 10 s (with
scope 5 but 2 Bank). AlleAlle [18] is an SMT-based relational
model finder, being at a lower-level of abstraction than Alloy. It
is inspired by Codd’s relational algebra [5], allowing constraints
over data and supporting optimization problems. Constraints may
act on unbounded data, namely integers, but declared relations are
still bounded. By essentially having the same syntax as Alloy, all
these extensions still suffer from the language drawbacks described
in Section 2 when dealing with quantitative problems (e.g., lack of
dimensional type-safety).

As already mentioned, an alternative integer semantics where
overflows are forbidden has been proposed and integrated in the
official Alloy Analyzer [13]. It implements a three-valued seman-
tics of arithmetic operations so that overflows are detected and
instances where overflows occur removed from the search space.
While useful in certain scenarios, it may also give the user a false
sense of confidence since relevant counter-examples may be dis-
carded.

Some extensions of Alloy have been proposed to address opti-
mization problems. The already mentioned AlleAlle [18] supports
maximization/minimization objectives through the 𝜈Z optimizing
SMT solver. AlloyMax [22] is able to generate maximal/minimal
solutions by relying on PMax-SAT solvers. Alloy* [14], a solver
for higher-order relational models can also be used to generate
optimal solutions. Quantitative problems requiring optimization
(considering not only the number of tuples, as in AlloyMax, but
also their quantities) are an interesting class of problems that are
still not addressed by QAlloy.

7 CONCLUSION

This paper describes QAlloy, a quantitative relational modelling
language based on Alloy, along with its automated Analyzer.
Instead of having explicit integers, QAlloy internalizes them in
relations, generalizing the Alloy semantics based on Boolean ma-
trices to a linear algebra semantics based on integer matrices. It
also replaces the SAT-based analysis of Alloy by an SMT-based
one, enabling unbounded quantities. Our evaluation has shown that
the approach is feasible, often outperforming the Alloy bounded

versions. Alloy has shown to be well-suited to reason about quali-
tative requirements in structural design. We believe QAlloy also
enables the application of its popular features to the analysis of
the quantitative requirements that are now ubiquitous in software
development.

In the future we intend to continue researching the topic of
quantitative relational modelling, namely to improve QAlloy and
its Analyzer. First, while the QAlloy Analyzer already supports
basic instance iteration, quantities introduce an additional layer
of complexity that affects scenario exploration. We intend to ex-
plore techniques to provide richer exploration operations, namely
operations that force changes in the structure of the instances or
meaningful changes in quantities. Second, we intend to identify and
formalize a subset of QAlloy that is effectively decidable and guar-
antees an answer by the SMT backend. Nonetheless, a definitive
answer was always returned by at least one of the solvers in all our
examples. Related to that, we intend to implement in the QAlloy
Analyzer some sort of portfolio solving (either natively or using an
off-the-shelf implementation such as Par8) precisely to maximize
the chances of getting a definitive answer. Third, we intend to ex-
periment with other quantitative domains, for instance, exploring
a semantics based on stochastic matrices. This would allow QAl-
loy to address, for instance, problems related to risk analysis [15].
Finally, we intend to research the integration of QAlloy with the
latest version 6 of Alloy [10], that now supports mutable relations
and temporal logic to enable behavioural analysis. The challenge
here is upgrading the SAT-based model checking backend of Alloy
6 to use SMT solvers.
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