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Abstract. Robotics is very appealing and is long recognized as a great
way to teach programming, while drawing inspiring connections to other
branches of engineering and science such as maths, physics or electronics.
Although this symbiotic relationship between robotics and programming
is perceived as largely beneficial, educational approaches often feel the
need to hide the underlying complexity of the robotic system, but as a
result fail to transmit the reactive essence of robot programming to the
roboticists and programmers of the future.
This paper presents rosy, a novel language for teaching novice pro-
grammers through robotics. Its functional style is both familiar with a
high-school algebra background and a materialization of the inherent
reactive nature of robotic programming. Working at a higher-level of
abstraction also teaches valuable design principles of decomposition of
robotics software into collections of interacting controllers. Despite its
simplicity, rosy is completely valid Haskell code compatible with the
ROS ecosystem.
We make a convincing case for our language by demonstrating how non-
trivial applications can be expressed with ease and clarity, exposing
its sound functional programming foundations, and developing a web-
enabled robot programming environment.

Keywords: robot programming; introductory programming; functional reac-
tive programming.

1 Introduction
Robotics, though a multi-disciplinary area of engineering and science, shares a
unique symbiotic relationship with computer science. As robots are increasingly
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put to solve more complex tasks, the more important it becomes to look carefully
into the software that runs inside them, and in particular to the programming
languages that bring them to life. At the same time, programming a robot can
grant computer science an often missing practical appeal, with a pedagogical
potential long recognized by computer science educators [4].

Various studies corroborate that robotics can indeed mitigate the abstract
nature of programming [18] and provide a more creative environment for teach-
ing hands-on problem solving [10] and for coding rich behavior using basic code
structures [13], while still requiring reasoning about relevant computational con-
cepts such as software modularity and communication [15].

Yet, the richness of robot programming is synonym of its real-world complex-
ity, which renders standard robotic frameworks unfeasible for use in a pedagog-
ical setting and has been motivating the proposal of various educational robot
programming frameworks. As the synergy between robotics and programming
deepens, education is the perfect place to experiment novel approaches that can
shape the robot programming languages of the future [7]. It also carries a timely
opportunity to transmit good design practices to new generations of program-
mers, that are receptive to novel languages as long as these allow to quickly build
applications [11].

As a step towards realising this vision, we advocate that languages for teach-
ing robotics to novice programmers shall:

– be compatible with standard robotic practices and seamlessly connect to
existing robotic infrastructures;

– adopt a simple declarative programming style and provide a pure cause-
and-effect interface emphasizing the essence of what it means to program a
reactive system;

– rely on a general-purpose programming language with good tool support,
so that advanced programming features can be gradually introduced and
acquired programming skills can naturally transfer to other domains.

In Section 2, we argue that state-of-the-art languages fail, to some extent, to
exhibit these characteristics. This justifies the proposal of rosy, a simple yet
powerful reactive programming language, presented in Section 3. To ease adop-
tion by novice programmers, rosy is supported by a browser-based development
environment, described in Section 4. As an embedded domain-specific language,
rosy supports the full power of higher-order functional programming offered by
the host Haskell language, and is connected to ROS, one of the most popular
robotic middlewares. The mechanics behind its implementation is presented in
Section 5. Section 6 concludes the paper and leaves directions for future work.

This paper is an extended version of a conference version [19]. We have
extended the rosy language with the notion of parameters, services and actions,
thus supporting most of the concepts of the ROS Computation Graph4. We
introduce additional examples to demonstrate these new features and how they
are integrated for the modular design of more complex, task-oriented, controllers.
4 http://wiki.ros.org/ROS/Concepts
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The environment has also been enhanced with a new simulation library, the
TurtleSim, that demonstrates ROS services and the deployment of multiple
identical robots, and allows for a gentler learning curve.

2 The pedagogy of robot programming languages
Programming robots is a particularly complex task, where one has to deal not
only with the continuous and real-time aspects of the physical world, but also
with heterogeneous architectures and complex communication paradigms. To
minimize frustration of novice programmers, several pedagogical languages and
approaches have been proposed over the years. This section reviews and discusses
such related work.

2.1 The Robot Operating System

Robotic middlewares have been developed to ease the programming of robots,
abstracting hardware and communication details and promoting modularity. The
Robot Operating System (ROS) [23] is one such middleware, possibly the most
popular, and defines an architecture through which components, called nodes
in ROS, can communicate with each other. This communication can follow a
many-to-many publish / subscribe paradigm through data sources called topics,
or a request / reply paradigm through services. For longer and more complex
tasks, ROS also provides an action library for non-blocking requests with peri-
odic feedback. For all these functionalities, ROS allows the definition of custom
message types, from which source code is automatically generated. A globally ac-
cessible key/value dictionary is also provided as a parameter server. Other than
this, individual nodes are programmed in general-purpose languages, typically
C++ or Python. The popularity of ROS is fueled by a very dynamic commu-
nity and an open-source policy that encourages code re-use, and a large package
database ranging from educational to industrial applications.

As a pedagogical example, consider the well-known TurtleBot2 robot5, whose
controller is programmed in ROS-powered C++. A main node controls its
Kobuki mobile base publishing odometry information and data collected from a
set of sensors (collision, cliff and wheel drop sensors, plus a few buttons), and
subscribing to commands that control its (linear and angular) velocity and the
color of a set of LEDs. Kobuki defines custom message types for the relevant
events, from which C++ types are generated. Below is a minimal example of
a ROS application that subscribes to bumper events and plays an error sound
when a bumper is pressed:

Snippet 1 (Play a sound on collision).

ros::Publisher pub;

void cb (const kobuki_msgs::BumperEventConstPtr& b){
if (b->state==kobuki_msgs::BumperEvent::PRESSED){

kobuki_msgs::Sound s;

5 https://www.turtlebot.com/turtlebot2/

https://www.turtlebot.com/turtlebot2/
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Fig. 1: A simple block to draw a square (TurtleBot3Blockly).

s.value = kobuki_msgs::Sound::ERROR;
pub.publish(s); } }

int main(int argc, char** argv){
ros::init(argc, argv, "play");
ros::NodeHandle nh;
ros::Subscriber sub = nh.subscribe(

"/mobile_base/events/bumper", 10, cb);
pub = nh.advertise<kobuki_msgs::Sound>(

"/mobile_base/commands/sound", 10);
ros::spin();
return 0; }

Even this minimal snippet is clearly non-trivial for novice programmers, obfus-
cating the truly reactive nature of the controller. Besides having to get around
advanced linguistic features such as pointers, namespaces or templates, to manip-
ulate topics the programmer must first explicitly subscribe to bumper events and
advertise that sound commands will be published, considering the buffer size
for incoming and outgoing messages. The programmer must also reason about
how topics are processed, by registering a callback on the ros::Subscriber that
will publish an error sound command if a bumper pressed event is read, and
when topics are processed, in this simplest case using the ROS spin primitive
that periodically processes callbacks for the queued messages.

ROS is widely used in educational contexts, and the community has de-
veloped considerable material to assist novice robotic programmers. One such
popular library is the TurtleSim6, which allows a client to control multiple min-
imalistic simulated robots, named “turtles”, each subscribing to velocity com-
mands. To manage the number of turtles being simulated, a set of ROS services
is provided to spawn and kill turtles. ROS tutorials on actions usually also rely
on the TurtleSim to exemplify longer running tasks, such as drawing geometrical
shapes in multiple steps.

2.2 Visual robot programming languages

To tame the complexity of programming robots in fully-fledged general-purpose
programming languages, a myriad of frameworks aimed at novice robot pro-
gramming using visual programming languages have been proposed [9]. Many
of these follow a block-based approach [2, 6, 16, 17, 26], where predefined blocks
with varied colors and edges can be put together like pieces of a puzzle to define
a robotic controller.
6 http://wiki.ros.org/turtlesim
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Aside from discussions on whether block-based approaches constitute “real”
programming or their programming experience transfers to “real” textual lan-
guages [25,27], and with due exceptions such as [16], the vast majority of block-
based robot programming approaches adopt an imperative mindset: primitive
blocks execute individual predefined tasks, such as moving forward during a cer-
tain period of time or for a certain distance; and combining blocks amounts to
performing sequences of tasks. For example, the TurtleBot3 can be programmed
via a block-based interface illustrated in Fig. 1. Albeit simple, this example
block hides away the reactive nature of the robotic system – all the sensor and
command behavior is encapsulated within the black-box primitive blocks. Other
non-pedagogical approaches such as SMACH7 facilitate the design of complex
robot controllers as hierarchical state machines, but each state/block is coded
in standard ROS.

2.3 Functional reactive programming languages

Reactive programming [3] is a programming paradigm organized around infor-
mation producers and consumers, that can naturally bring out the intrinsically
reactive nature of cyber-physical systems. A particularly active line of research,
known as functional reactive programming (FRP) [21], focuses on streams of
information as the central reactive abstraction, and advocates a declarative ap-
proach to manipulate streams at a high-level of abstraction supported by the
pure equational reasoning of functional languages such as Haskell.

Functional languages, as a form of algebra, are a good fit for introductory
programming [11], and many pedagogical FRP approaches have been proposed
for programming interactive games and animations [1, 5, 7, 12]. Much classical
work has also proposed FRP for programming robots [14,20,22].

In FRP, time is typically explicit and conceptually continuous; the system
is executed by sampling all streams synchronously at the rate of an external
global clock. The roshask [8] Haskell ROS library promotes the modularity and
expressiveness of FRP, while remaining faithful to the asynchronous nature of
ROS, by adopting a more pragmatic approach centered on manipulating topics
in their entirety.

2.4 Towards a pedagogical robot FRP language

Despite the declarative nature of functional programming and the focus on events
of reactive programming, the combinatorial FRP style is not beginner friendly,
as it tends to swallow entire programs and resorts to advanced higher-order
features to separate reactive code (referring to entire topics) from non-reactive
code (referring to individual events). The success of existing pedagogical FRP
approaches then lies on giving away some expressiveness and making time im-
plicit, what liberates novice programmers from specific FRP syntax and invites
them to simply write non-reactive pure functions, that are synchronously exe-
cuted at a fixed rate.
7 http://wiki.ros.org/smach
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In this paper, we advocate that a toned-down FRP language, focused on
individual events, captures the reactive essence and represents a sweet spot of
introductory robot programming.

To support asynchronous behavior and retain some of the expressiveness of
FRP, these functions then have an intuitive interpretation as operations on data
streams.

3 The rosy language
The rosy language presents itself as a natural dialect for bringing robots alive
using nothing more than plain mathematics, while promoting good software de-
sign practices. In this section, we make a case for how its declarative nature
allows creating robotic controllers in an intuitive and painless way, and infor-
mally present its defining features through a collection of examples of increasing
complexity. The rosy language is independent of the robot drivers, but is stati-
cally wired to the communication topics of a particular robot. The programming
model of rosy focuses is built around the notion of ROS topics, and provides ab-
stractions to model ROS-like services, actions or parameters not consider more
advanced non-reactive ROS features such as services.

The rosy website8 offers a modern integrated development environment, in-
cluding an editor, extensive documentation, help guides, and executable versions
of all the examples shown in this section and more.

For readers not familiar with Haskell syntax, all the functions and opera-
tors not defined in this paper are standard and their definition can be found
at https://hoogle.haskell.org. The documentation for respectively colored
rosy-specific functions and types is available at the rosy website.

3.1 A rosy primer

In rosy, we can control a robot by writing pure functions that receive sensor
information from the robot and react by sending commands back to the robot.
To make a robot move forward at a constant velocity of 0.5 m/s, we can simply
write:

Example 1 (Move forward).

move :: Velocity
move = Velocity 0.5 0

main = simulate (Kobuki Nothing) move

The move function models our controller (where the robot Velocity is sepa-
rated into its linear and angular components), and the main function is rosy-
specific syntax to simulate our controller. (that will be elided from now on).
The rosy language supports a Kobuki or a TurtleSim robot, determined by
the simulate instruction. In these examples, until explicitly stated otherwise, a
Kobuki will be used, that offers a more realistic robotic interface. The types and
8 http://rosy.inesctec.pt

https://hoogle.haskell.org
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associated fields used in the examples will therefore spell the standard Kobuki
ROS message types. Still, the astute reader may fittingly ask “for how long are
we telling the robot to move forward?” Being rosy a reactive programming lan-
guage, the answer is not “once” or “for a certain period of time”, but actually
“forever”. The intuition is that a controller is a function that unceasingly lis-
tens for inputs, and for each received input produces an output, what grants
rosy programs an implicit notion of time. Here move receives no inputs, so it
will produce Velocity outputs at a fixed rate.

To make things a bit more interesting, imagine that we want the robot to
accelerate forward with non-constant velocity. We can achieve this behavior by
making sure to increase the robot’s velocity at each point in time:

Example 2 (Accelerate forward).

accelerate :: Velocity -> Velocity
accelerate (Velocity vl va) = Velocity (vl+0.5) va

Note that the same Velocity type has different input and output meanings. This
second accelerate controller is a function that repeatedly asks the robot for its
current linear velocity, and commands the robot to increase it by 0.5 m/s.

As our robot is moving forward, what if it hits a wall? We can naturally
express multiple rosy controllers that react to distinct events. For instance, we
can make the robot play an error sound when one of its bumpers is pressed,
what will happen on contact with a wall:

Example 3 (Accelerate and play a sound on collision).

play :: Bumper -> Maybe Sound
play (Bumper _ Pressed) = Just ErrorSound
play (Bumper _ Released) = Nothing

accelerateAndPlay = (accelerate,play)

In this example, we define a composite accelerateAndPlay controller by simply
pairing together accelerate and play. Note that these two functions are not
required to execute at the same time: accelerate runs on periodic robot infor-
mation, though play waits for Bumper events. The two controllers will execute in
parallel, effectively combining both behaviors. To be able to play a sound only
when a bumper is Pressed, and not Released, the play function may or may not
produce a Sound command. The play rosy controller displays the same behavior
as the ROS one encoded in Snippet 1, but here its reactive nature is clear from
the type declaration.

Even though the controller from Example 3 detects when the robot hits a
wall, it will continue to push against the wall, likely reaching a deadlock. With
controllers as pure functions that react to events as they happen to be, there is no
easy way to make a controller remember some event in the past. This contrasts
with traditional imperative robot programming languages, where we could use a
global variable to, e.g., memorize when the robot has hit a wall and, from then
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Fig. 2: The random walker application in rosy.

on, change its behavior. Like other pedagogical functional languages [12], we
grant rosy controllers a notion of Memory, that can be used to, e.g., remember
the robot’s moving direction:

Example 4 (Accelerate forward, then backwards on collision).

type Hit = Bool

reverseDir :: Bumper -> Memory Hit
reverseDir _ = Memory True

accelerate :: Memory Hit -> Velocity -> Velocity
accelerate (Memory hit) (Velocity vl va) =

if hit then Velocity (vl-0.5) va else Velocity (vl+0.5) va

forwardBackward = (reverseDir,accelerate)

Here the controller hands over its memory to accelerate, that uses it to de-
termine in which direction to move. To reconcile memory with pure functional
programming, controllers that may change the memory must return it explicitly
as an output. The Hit boolean memory will be false by default, and set to true
by reverseDir when a bumper event occurs.

3.2 Revisiting ROS controllers

For a more complete and realistic example, we now encode the popular Kobuki
random walker controller in rosy, while trying to stay faithful to the C++
ROS implementation9:

– On a bumper or cliff event, the robot blinks one of its LEDs orange and
decides to change its direction;

– On a wheel drop event, the robot blinks both LEDs red and decides to stop
moving while the wheel is in the air;

– When changing direction, it randomly decides on an angle between 0◦ and
180◦ and on a left/right direction. Depending on a fixed angular velocity, it
estimates how many seconds it shall turn;

9 https://github.com/yujinrobot/kobuki/tree/devel/kobuki_random_walker

https://github.com/yujinrobot/kobuki/tree/devel/kobuki_random_walker
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– A sequential loop routinely performs the adequate action depending on the
state of the controller. It commands the robot to either: go forward, stop
moving, or turn in a given direction for a number of seconds.

Example 5 (Random walker).

data Mode = Go | Stop | Turn Double Seconds
data ChgDir = ChgDir -- change direction

vel_lin = 0.5
vel_ang = 0.1

bumper :: Bumper -> (Led1,Maybe ChgDir)
bumper (Bumper _ st) = case st of

Pressed -> (Led1 Orange,Just ChgDir)
Released -> (Led1 Black,Nothing)

cliff :: Cliff -> (Led2,Maybe ChgDir)
cliff (Cliff _ st) = case st of

Hole -> (Led2 Orange,Just ChgDir)
Floor -> (Led2 Black,Nothing)

wheel :: Wheel -> (Led1,Led2,Memory Mode)
wheel (Wheel _ st) = case st of

Air -> (Led1 Red,Led2 Red,Memory Stop)
Ground -> (Led1 Black,Led2 Black,Memory Go)

chgdir :: ChgDir -> StdGen -> Seconds -> Memory Mode
chgdir _ r now = Memory (Turn (if b then 1 else -1) time)

where (b,r') = random r
(ang,_) = randomR (0,pi) r'
time = now + doubleToSeconds (ang/vel_ang)

spin :: Memory Mode -> Seconds -> (Velocity,Memory Mode)
spin m@(Memory Stop) _ = (Velocity 0 0,m)
spin m@(Memory (Turn dir t)) now | t > now = (Velocity 0 (dir*vel_ang),m)
spin m _ = (Velocity vel_lin 0,Memory Go)

randomWalk = (bumper,cliff,wheel,chgdir,spin)

The randomWalk controller encodes each part of the above specification as a sepa-
rate function, sharing a memory Mode that encodes the different robot states. The
ROS-style computation graph is illustrated in Fig. 2: nodes are defined reactive
functions, and topics are user-defined or Kobuki events. The bumper and cliff
functions change LED colors, and set in motion a change in direction. For greater
modularity, they both emit a new event of type ChgDir. The wheel function also
changes the LEDs’ colors and sets the memory mode to the Stop state. The spin
function reads the memory mode, sets the respective velocity depending on the
mode, and returns an updated mode. It receives the current time in Seconds to
determine if the estimated turning time has elapsed.
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The most complicated behavior is left to function chgdir, that resolves ChgDir
events to concrete Turn actions. To implement random behavior, it resorts to
a Haskell standard randomness generator of type StdGen to generate a random
direction and angle, and reads the current time to calculate the time limit for the
Turn action. This is a good example of how the power of the full Haskell language
can be gradually unleashed as students tackle more advanced problems.

Another popular Kobuki controller is the safety controller10, that imposes
stricter conditions on dangerous events. Its C++ ROS implementation can be
encoded in rosy as a single controller that reacts to bumper, cliff or wheel drop
events and cautiously decides on a new velocity to escape danger:

Example 6 (Safety controller).

safetyControl :: Either (Either Bumper Cliff) Wheel -> Maybe Velocity
safetyControl = ...

The code for safetyControl is conceptually simple, yet verbose as it explores
multiple combinations of sensor inputs. We omit it in the paper, but it can be
found at the rosy website.

The safety controller does not do much by itself, and it is typically deployed
together with the random walker to limit its actions as the robot roams around.
Since both controllers publish possibly conflicting Velocity commands to the
robot, the traditional ROS solution is to use a multiplexer that remaps topics
and allows one controller at a time to command the robot, according to a fixed
set of priorities.

We can define a general multiplexer in rosy as follows:

Example 7 (Binary multiplexer, M1 with priority over M2).

data M = Start | Ignore Seconds
data M1 a = M1 a
data M2 a = M2 a

mux :: Seconds -> Memory M -> Either (M1 a) (M2 a) -> Maybe (a,Memory M)
mux t _ (Left (M1 a)) = Just (a,Memory (Ignore(t+d)))
mux t (Memory (Ignore s)) _ | s > t = Nothing
mux t _ (Right (M2 a)) = Just (a,Memory Start)

This binary multiplexer reads the current time t in Seconds and reacts to events
either marked as M1 or M2, giving higher priority to M1 events by setting a time
interval from t to t+d (for a fixed duration d) during which all M2 events are
ignored.

We can then instantiate a safe random walker by remapping output velocities
of the safety and random walker controllers with M1 and M2 tags and running a
multiplexer in parallel:

Example 8 (Random walker with safety controller).
10 https://github.com/yujinrobot/kobuki/tree/devel/kobuki_safety_

controller

https://github.com/yujinrobot/kobuki/tree/devel/kobuki_safety_controller
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safetyControl :: ... -> Maybe (M1 Velocity)
spin :: ... -> (M2 Velocity,...)
muxVel :: ... -> Either (M1 Velocity) (M2 Velocity) -> Maybe (Velocity,...)

safeRandomWalk = (randomWalk,safetyControl,muxVel)

The complete refactored code for the safeRandomWalk controller is available at
the rosy website.

3.3 Revisiting block-based languages

Because controllers in rosy run forever, they do not directly lend themselves to
performing sequences of instructions. For concreteness, imagine that we want to
command the robot to draw a square on the floor with its movement. In a visual
robot programming language, this can be done by assembling a block like the
one from Fig. 1. Even though such a block can be expressed in rosy as a multi-
stage controller that explicitly encodes a state machine and reacts differently
depending on the state11, it is useful to lend more structure to the language as
the complexity of the controller grows.

Like other FRP languages [22], rosy introduces the concept of tasks, as a
continuous controller and a terminating event. For example, we can make the
robot turn sideways by a fixed amount of degrees by writing a task:

Example 9 (Task: Turn left or right).

type Side = Either Degrees Degrees

turn :: Side -> Task () ()
turn s = task runTurn (taskOpts { init = startTurn s })

startTurn :: Side -> Orientation -> Memory Orientation
startTurn (Left a) o = Memory (o+degreesToOrientation a)
startTurn (Right a) o = Memory (o-degreesToOrientation a)

runTurn :: Memory Orientation -> Orientation -> Either Velocity (Done ())
runTurn (Memory to) from = if abs d <= err

then Right (Done ())
else Left (Velocity 0 (orientation (normOrientation (to-from))))

A task receives an optional initializer that sets up the stage for the controller;
in this example, the startTurn initializer reads the robot’s Orientation from its
odometry information, and writes the desired final Orientation to memory by
adding or subtracting the received angle to the current orientation. The runTurn
controller will rotate the robot towards the desired orientation until the desired
and current orientations are equal with a small error margin err, signalling
when it is Done. The Done type allows returning additional information on task
termination. Returning nothing is achieved with the empty type ().
11 Classical FRP frameworks tackle this general problem by designing advanced higher-

order switching combinators over reactive functions, that are expressively powerful
but even less novice-friendly.
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A similar task makes the robot move a fixed distance:

Example 10 (Task: Move forward or backwards).

data Direction = Forward Centimeters | Backward Centimeters

move :: Direction -> Task () ()
move = ...

Since tasks can end, in contrast to controllers, we can now mimic the block
from Fig. 1 in rosy by using Haskell’s monadic notation to sequence tasks in
an imperative style:

Example 11 (Task: Draw a square).

drawSquare :: Task () ()
drawSquare = replicateM_ 4 $ do { move (Forward 2); turn (Left 90) }

3.4 Supporting services and multiple robots

In rosy (as in Haskell), the monadic syntax allows a crisp distinction between
the continuous (functional) world of controllers and the synchronous (impera-
tive) world of tasks, that promote two different styles of composition: multiple
controllers interact with the robot in parallel, while multiple tasks execute in
sequence. Aside from deployment details, a ROS service can be seen as a client-
side function: a client sends a request and waits for a response. Since request and
response are not ROS events, and a service caller blocks until it gets a response,
services are best modelled as rosy task-level functions.

As customary in ROS tutorials, we will use the TurtleSim to exemplify the
usage of services in rosy. In terms of controllers, a TurtleSim turtle is a simpler
version of a Kobubi that only supports three events for Velocity, Position and
Orientation. These are distinguished from the similarly-named Kobuki events by
indicating a fixed event-level TurtleNumber, which is just an Int that identifies
each Turtle. For instance, we can easily adapt one of our rosy examples to make
the first turtle accelerate:

Example 12 (Accelerate the first turtle).

accelerate :: Turtle 1 Velocity -> Turtle 1 Velocity
accelerate (Turtle (Velocity vl va)) = Turtle (Velocity (vl+0.5) va)

main = simulate Turtlesim accelerate

We change the argument to simulate accordingly. From now on, our examples
will assume a TurtleSim.

Adapted to turtle events, we can also reuse the previous logic of the turn
and move tasks to control a specific turtle:

Example 13 (Task: Turn and move turtle).

turn :: TurtleNumber -> Side -> Task () ()
move :: TurtleNumber -> Direction -> Task () ()
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Besides events regarding the state of each turtle, the TurtleSim offers a few
simple services for managing the number of turtles and controlling the properties
of each turtle’s position and pen, encoded as task-level functions in rosy:

spawn :: Position -> Orientation -> Task () TurtleNumber
kill :: TurtleNumber -> Task () ()
setPen :: TurtleNumber -> Pen -> Task () ()
teleportAbsolute :: TurtleNumber -> Position -> Orientation -> Task () ()
...

The spawn service spawns a new turtle with the provided parameters, and returns
its number; the other listed services return an empty response, but their invoking
task (or controller as we will see later) will nonetheless wait for them to complete.

We can now seamlessly combine tasks and services to make a turtle draw an
endless spiral:

Example 14 (Task: Draw a colored spiral).

spiral :: TurtleNumber -> Double -> Double -> Double
-> Color -> (Color -> Color) -> Task () ()

spiral n len ang width c upd = do {
setPen n (Pen c (floor width) On);
move n (Forward len); turn n (Left ang);
spiral (len+0.02) (ang-0.5) (width+0.2) (upd c) upd }

red_spiral1 = spiral 1 0.2 30 1 black tored
where tored (Color r g b) = Color (r+10) g b

The spiral parametrized task is a recursive function that interpolates the shape
of a spiral by having the turtle moving forward and turning left by increasing
distance and decreasing angle. The setPen service is used in each step to increase
the thickness of the pen and lighten the color, where a Color is given by its
(r,g,b) components between 0 and 255; red_spiral1 is the top-level task to be
simulated, and draws a red gradient spiral with the first default turtle.

Sometimes it is useful to write controllers that may dynamically control more
than one turtle, depending on particular events. For instance, we can write a
controller that makes all active turtles follow a designated leader.

Example 15 (Task: Follow the leader).

advertise :: Param TurtleNumber -> AnyTurtle Position
-> Maybe (Memory Position)

advertise (Param n1) (AnyTurtle n2 p) = if n1 == n2
then Just (Memory p) else Nothing

follow :: Param TurtleNumber -> Memory Position -> AnyTurtle Pose
-> (AnyTurtle Velocity)

follow (Param l) (Memory p2) (AnyTurtle n pose)
| n == l = AnyTurtle n (Velocity 0.5 0.2)
| otherwise = AnyTurtle n (Velocity vl va)

where p1 = posePosition pose
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Orientation o = poseOrientation pose
vec = subVec (positionToVec p2) (positionToVec p1)
a = angleVec vec
vl = if abs va < 0.2 then magnitudeVec vec else 0
va = normRadians (a - o)

followTheLeader :: Task () ()
followTheLeader = task (advertise,follow) taskOpts

In this example the TurtleNumber of the leader is defined via a global Parameter,
that may be read/set in parallel at any time by any other controller or task.
The followTheLeader task uses task-local Memory to record the current Position
of the leader. The advertise controller listens to all turtle’s positions and adver-
tises new Positions of the leader. The follow controller makes all other turtles
but the leader move towards the most recently recorded leader’s Position. The
special parameterized AnyTurtle event allows subscribing/publishing an event
for all the active turtles.

3.5 Integrating actions

So far, we have seen how the task notation greatly simplifies the design of sequen-
tial robotic tasks, which comes precisely from the fact that the controller waits
for the result of the task. However, within the ROS ecosystem, the synchronous
nature of services is fit for short tasks (such such as changing the pen style), but
ill-advised for long-running tasks (such as drawing a spiral), since it prevents
the calling controller from doing anything in-between, including preempting the
task itself. For long-running tasks, the recommended ROS interface is that of
asynchronous actions: a client can call an action with a request and register a
callback through which it will get a response once the task terminates (and,
possibly, progress feedback in the meantime). Since the main difference is that
a calling controller does not block waiting for a response, we model actions in
rosy by calling a task from within a continuous, asynchronous controller. This
is similar to the ROS approach to actions, which is a library also built on top
of the primitive ROS communication mechanisms (namely topics and services).

Imagine, for instance, that we want to spawn a second turtle and have two
turtles drawing spirals of different angles and colors. With the mechanisms pre-
sented thus far, such tasks would have be sequential, but rosy also supports
wrapping them as asynchronous tasks.

Example 16 (Task: Draw two colored spirals).

green_spiral2 = do {
turtle <- spawn turtlesimDefaultPosistion turtlesimDefaultOrientation;
spiral turtle 0.3 40 1 black togreen }

where togreen (Color r g b) = Color r (g+10) b

spiral12 = (call red_spiral1 callOpts,call green_spiral2 callOpts)

The green_spiral2 task spawns a second turtle in the same position as the first
one and then, similarly to red_spiral1, makes it draw a green spiral with a
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narrower angle. A function call creates a new context within a controller in
which it executes a synchronous task; it returns an event that issues the call and
may wait for the result of the task by passing additional parameters to callOpts.
The two spiral tasks are put together by the top-level spiral12 controller.

Given its asynchronous nature, a ROS action supports additional features
beyond services. Besides the final response, an action may provide frequent feed-
back to the caller during its execution, and the caller may cancel the action before
it terminates. To illustrate how these concepts can be modeled using rosy tasks,
consider the following task that mimics the rotateAbsolute action offered by
the TurtleSim since ROS 2 Foxy12 and makes a turtle rotate to an absolute
orientation:

Example 17 (Task: Rotate turtle to absolute orientation, action server).

startRotAbs :: Turtle n ()
-> Turtle n Orientation -> Seconds -> (Memory Radians)

startRotAbs _ (Turtle (Orientation o)) now = (Memory o)

doRotAbs :: Radians -> Turtle n () -> Turtle n Orientation
-> Memory Radians -> Either (Feedback Radians,Turtle n Velocity)

(Turtle n Velocity,Done Radians)
doRotAbs dest _ (Turtle (Orientation now)) (Memory start) =

if abs remaining <= 0.02
then Right (Turtle (Velocity 0 0),Done delta)
else Left (Feedback remaining,Turtle (Velocity 0 vl))

where delta = normRadians (start - now)
remaining = normRadians (dest - now)
vl = if remaining < 0 then -remaining else remaining

cancelRotAbs :: Turtle n () -> (Turtle n Velocity)
cancelRotAbs _ = (Turtle (Velocity 0 0))

rotateAbsolute :: TurtleNumber -> Radians -> Task Radians Radians
rotateAbsolute n ang = onTurtle n (\t -> task (doRotAbs ang t) (opts t))

where opts t = TaskOpts (startRotAbs t) (cancelRotAbs t)

Here task rotateAbsolute encodes the action server. It receives the desired ori-
entation, and its initializer event calculates and memorizes the angular displace-
ment to the starting position. In each step, doRotAbs either instructs the turtle
to rotate and reports the remaining distance as Feedback, or identifies the task as
finished and returns Done. If the task is cancelled, it sets the velocity of the turtle
to zero to make the turtle stop before exiting (since the TurtleSim remembers
the last issued Velocity command for the duration of one second). The onTurtle
operator converts a value-level turtle number to an event-level turtle number,
which is used to connect the controllers to the appropriate turtle.

Example 18 (Task: Rotate turtle to absolute orientation, action client).
12 https://github.com/ros/ros_tutorials/tree/foxy-devel/turtlesim

https://github.com/ros/ros_tutorials/tree/foxy-devel/turtlesim
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(a) Kobuki simulator (b) TurtleSim simulator
Fig. 3: The CodeWorld-powered rosy environment.

cancel_halfway :: Turtle 1 Orientation -> Maybe Cancel
cancel_halfway (Turtle (Orientation o)) =

if o >= pi/2 then Just Cancel else Nothing

cancel_rotate1 = call (rotateAbsolute 1 pi) opts
where say_feed f = Say ("feedback " ++ show f)

say_done d = Say ("done " ++ show d)
opts = CallOpts cancel_halfway say_feed say_done

The cancel_rotate1 controller acts as a (non-blocking) action client. It calls
the rotateAbsolute action to rotate the first turtle for π radians, and cancel the
action halfway. The additional options passed to call specify how to react to
received feedback and end events, in this case by printing to the console.

4 Environment
As well as striving to allow students to learn a “real” programming language
while freeing them from inessential technical language details outside of how to
control a robot, rosy comes with a fully integrated development environment. To
really allow students to concentrate on the meaning of their programs, ignoring
deployment details, the rosy environment runs as a web application inside any
modern web browser.

Fig. 3 shows the rosy environment in action, both with the Kobuki and the
TurtleSim simulators running some of the examples from Section 3. It is pow-
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Fig. 4: The rosy architecture.

ered by Codeworld [5], a modern educational environment for writing graphical
Haskell programs such as games and animations. CodeWorld has been used in
K12 schools for years, and supports a code editor with features such as syntax
highlighting, improved on-the-fly compiler error messages, extensive documen-
tation or easy sharing of projects.

Another vital component of the environment is a visualizer that simulates,
directly in the browser, how the controller programmed by the student inter-
acts with a robot in a fictitious 2D world. At the moment, this is tailored for a
TurtleBot2 placed in a tiled world made of floor, walls and cliffs. In rosy training
sessions for K12 students that we have hosted at the University of Minho, stu-
dents could also deploy their same code to control a real robot and perceive the
differences between a simulated and a real world. Enabling students to simulta-
neously test their examples in simulated and real scenarios played an important
role in teaching them the importance of these differences and their influence on
the design of approximate, event-driven robotic controllers.

5 Under the hood
Despite their simplicity, rosy programs are fully compatible with the ROS in-
frastructure. Under the hood, the rosy language is implemented as an embedded
domain-specific language that provides an additional abstraction layer over the
existing Haskell ROS library. The rosy environment is also implemented in
Haskell, by extending and specially tailoring the CodeWorld [5] environment to
rosy. This includes a custom prelude that is imported by default, a custom code
pre-processor to automatically derive necessary Haskell type class instances, and
a custom graphical simulation of the robot. All the source code is open-source
and freely available13.

5.1 Haskell ROS library

The roshask library [8] enables ROS programming within the Haskell ecosys-
tem by supporting the deployment of ROS client nodes that are compatible
13 https://github.com/hpacheco/codeworld-rosy

https://github.com/hpacheco/codeworld-rosy
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with the TCPROS communications protocol14. roshask fades the architectural
boundaries between ROS system and software components, by lifting topics to
first-class values and designing a collection of FRP-style combinators to split,
fuse and generally manipulate topics in a more expressive, modular and compo-
sitional way.

At its core, the library provides functions for subscribing and publishing
topics:

subscribe :: String -> Node (Topic m a)
publish :: String -> Topic m a -> Node ()

The type variable m is a monad for actions with effects, typically IO for in-
teracting with a non-pure outside world, and a is the type of the subscribed or
published event derived from standard ROS message type definition files. Topics
are modeled as infinite monadic streams [21], i.e., monadic actions that produce
the next value and a new topic:

newtype Topic m a = Topic (m (a,Topic m a))

The Node monad manages TCP connections and internal buffers of published
and subscribed messages. The following example node subscribes to two sensors,
fuses them using the bothNew combinator (subsampling the faster topic), maps
an action act :: (Sense1,Sense2) -> Cmd over each pair of sensor values, and
publishes the resulting commands:

n1 = do { t1 <- subscribe "sense1"; t2 <- subscribe "sense2"
; publish "cmd" $ fmap act $ t1 `bothNew` t2 }

Internally, the asynchronous roshask behavior is implemented on top of Haskell
user-space threads, that are managed by the Haskell runtime and much more
efficient than system threads. For instance, a typical publish implementation
launches a thread that infinitely samples values from a topic and communicates
them to the ROS master; similarly, merging two topics is done by launching two
threads that independently consume each topic and write to a common channel.

Nodes can also be easily composed, for instance, we can simultaneously install
a handler that listens to and prints the published commands to the command
line:

n2 = subscribe "cmd" >>= runHandler putStrLn

In the style of publish, runHandler is a general combinator that launches a
thread that will consume values from a topic and execute some user-defined
IO action:

runHandler :: (a -> IO b) -> Topic IO a -> Node ()

The composite node n1 >> n2 will communicate the commands produced by n1
both via rostcp and locally to n2.
14 roshask topics are independent of the communication protocol. To support, e.g.,

ROS 2, suitable client library bindings may be required.
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5.2 Architecture
The rosy web environment, depicted on left side of Fig. 4, is designed accord-
ing to the common Model–View–Controller pattern, with components imple-
mented as separate roshask controllers that communicate locally and form
a single roshask node. The model controller (loosely) simulates a standard
kobuki_node15 or turtlesim16 in a simulated world, the view controller im-
plements a simple 2D animation of the robot within the world, and the user
controller represents the node specified by the programmer. To support web-
based simulation and loosen the dependency on ROS, we have adapted the
roshask library to run without a ROS master server. This way, all the Haskell
code needed to perform a simulation is compiled via GHCJS into a JavaScript
application that runs directly in the client browser.

Alternatively to web-based simulation, rosy programs can also be executed
on a local machine (right side of Fig. 4), by connecting to a ROS master server
and operate a more realistic Gazebo simulator or a real Kobuki robot. We have
tested both scenarios on Ubuntu 14.04 with ROS Indigo and a TurtleBot2. Cur-
rently, the TurtleSim interface is only supported via web-based simulation, and
we have not tested a simulated ROS TurtleSim node. Although rosy tasks are
designed to be fully compatible with ROS services and actions, they currently
only run locally within our simulated roshask web backend; registering them
with a ROS master would require additional rosy constructs to address names-
pacing and communication details and also extending the existing roshask sup-
port for services and actions, e.g., to support registering new services and actions.

5.3 Implicit stream programming
The greatest design decision of the rosy language is that controllers have an
implicit notion of time. This favors a simpler declarative style focused on which
commands are issued when events happens, without specifying how often sub-
scribers and publishers interact with the ROS world, and freeing programmers
from some of the common robotic programming details such as clocks, sampling
rates or synchronization. Therefore, unlike roshask, that exposes a full-fledged
API to manipulate topics as a whole, rosy controllers are less expressive in that
they only consider a single point in time.

Events are identified by their type in rosy. Two type classes internally bind
rosy types and ROS message namespaces to streams of subscribed sensors or
published commands:

class Sensor a where
sensor :: Node (Topic IO a)

class Command a where
command :: Topic IO a -> Node ()

For example, the same Velocity type can simultaneously express the act of
getting the current velocity from the robot’s periodic odometry data and the
act of setting the desired velocity by sending a command to the robot’s base:
15 http://wiki.ros.org/kobuki_node
16 http://wiki.ros.org/turtlesim

http://wiki.ros.org/kobuki_node
http://wiki.ros.org/turtlesim
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instance Sensor Velocity where
sensor = subscribe "odom" >>= return . fmap (_twist . _twist))

instance Command Velocity where
command = publish "/mobile_base/commands/velocity"

The rosy language currently supports a fixed set of events offered by the
kobuki_node and turtlesim APIs. Extending support for other robots simply
requires defining new boilerplate Sensor and Command instances, as roshask al-
ready supports many standard ROS message types and allows deriving Haskell
types from custom ROS message files.

To conciliate whole topics with point-wise controllers, we define another type
class that implicitly lifts a function on individual values to a controller on streams
of values:

class Controller a where
controller :: a -> Node ()

The stream semantics of the lifted controller is then inferred from the func-
tion’s type signature: inputs correspond to subscribed sensors, and outputs to
published commands, e.g.:

instance (Sensor a,Command b) => Controller (a -> b) where
controller f = sensor >>= command . fmap f

Instances for composite types perform implicit stream programming. For exam-
ple, a Controller that receives an input pair is fusing data from two sensors:

instance (Sensor a,Sensor b) => Sensor (a,b) where
sensor = liftM2 bothNew sensor sensor

As another example, a Controller that returns possibly different commands is
splitting the output stream (using the tee roshask combinator that duplicates
a topic), and processing each type of commands independently:

instance (Command a,Command b) => Command (Either a b) where
command t = do { (t1,t2) <- tee t

; command (lefts t1); command (rights t2) }

Multiple Controllers are executed in parallel threads, and can be composed in
sequence:

instance (Controller a,Controller b) => Controller (a,b) where
controller (a,b) = controller a >> controller b

5.4 Supporting user-defined events, memory and parameters

rosy also allows the declaration of user-defined data types for more modular
intra-node communication. Since these need not be bound to ROS namespaces,
every newly declared user-defined data type is by default a Sensor and a Command.
This is supported by a new UserNode monad that extends Node capabilities with
local type-indexed event buffers for user-defined data types.
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Since rosy programs are by design pure Haskell functions, there is no na-
tive support for common robotics design patterns that use global memory. It is
nonetheless possible to emulate global variables by publishing an initial event,
and on every update subscribing to current event and re-publishing its updated
value. Even so, this pattern can be error-prone as the programmer needs to be
cautious about subscribing and publishing the “variable” the right number of
times in order to keep it alive. This may also be problematic if more than one
controller is manipulating the same “variable” in parallel.

To avoid these caveats, rosy supports task-local memory (if a program has no
tasks, then memory is global) and global parameters (akin to ROS parameters).
We extend the UserNode monad with two transactional memory stores, holding
a global value for every distinct type a, distinguishable through two type-level
tags:

data Memory a = Memory a
data Param a = Param a

In order to support transactional controllers, or more specifically, be able to
execute each controller thread as a single transaction, we must generalize our
sensor and command interfaces to produce and consume topics of transactions17:

sensor :: UserNode (Topic IO (STM a))
command :: Topic IO (STM (Maybe a)) -> UserNode (Topic IO (STM ()))

A Sensor (Memory a) returns a topic that repeatedly reads from the memory vari-
able of type a, while a Command (Memory a) appends memory writes to a topic of
transactions, returning a new topic; Param behaves similarly. The greatest change
occurs on commands that, unlike before, must be published synchronously within
the same transaction, meaning we can no longer fork a topic and publish each
side independently. We can execute a controller thread by installing a handler
that atomically executes each transaction as a side effect:

instance (...) => Controller (a -> b) where
controller f = sensor >>= command . fmap f

>>= lift . runHandler atomically

5.5 Supporting multiple robots

The TurtleSim supports 9 different turtles, with topics identified by their num-
ber, e.g., each turtle X publishes its status to "/turtleX/pose". As ROS topics
map to rosy types, we create a type-level tag Turtle n a that identifies the
event a for turtle n. Here, n is a type-level number from 1 to 9. As in some exam-
ples that we have seen above, it is possible to convert a value-level turtle number
to a type-level turtle number, in order to define turtle-generic tasks/controllers
using the onTurtle :: TurtleNumber -> (forall n . Turtle n () -> b) -> b op-
erator as long as the behavior of the task/controller is not bound to a concrete
turtle (which is precisely captured by the type signature).
17 The STM monad stands for Haskell’s software transactional memory library. The

Maybe type is a technical requirement for filtering values inside a transaction, since
instances must not change the periodicity of the topics.
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In more advanced examples, it may be useful to dynamically control tur-
tles whose numbers are only known at run-time. For such cases, we offer a
AnyTurtle a type-level tag pairs an event a with a value-level TurtleNumber; its
Sensor instance subscribes to the events of all nine turtles and its Command in-
stance publishes to the topic of any turtle depending on the event’s value.

5.6 Supporting tasks

In roshask and other FRP approaches, topics are modeled as infinite streams
and topic handlers are program-long threads continuously waiting on and re-
acting to events. The fact that the data flow graph, inferred from the wiring of
stream combinators, is typically known statically, allows roshask to register all
subscribers and publishers with the ROS master at node initialization, before
starting to actually process data.

In rosy, a task is defined as a continuous controller and a terminating event:

task :: (Command init,Command cleanup,Controller ctrl)
=> ctrl -> TaskOpts init cleanup -> Task feedback end

It also receives as optional arguments an initialization step that is executed once
at startup and a cleanup step that is executed once before exiting when it is
cancelled; default options with no initialization and no cleanup are provided by
taskOpts. A task controller issues termination via a special event type:

data Done a = Done a

We also make Task a monad, so that programmers can use monadic notation to
sequence tasks. For composing two smaller tasks in into a composite task, where
the output of the first is passed on to the second, we may write:

task12 = do { end1 <- task init1 ctrl1; task (init2 end1) ctrl2 }

In this scenario, controllers no longer run forever: when the first task ends,
we must uninstall the controller ctrl1 and install a new controller ctrl2 for the
second task. We have extended roshask to support dynamic node configuration:
each task runs within its own UserNode; publishers and subscribers are registered
at declaration time; tasks keep a fine-grained control of launched threads, and
all children threads are killed when exiting the parent UserNode18. Memory is local
to each UserNode, while a Param lives through the whole Node.

We offer bindings to existing ROS services as tasks via roshask, e.g., for
killing a turtle:

kill :: TurtleNumber -> Task () ()
kill i = nodeTask (callService "kill" (KillRequest ("turtle"++show i)))

>>= \e -> case e of { Left err -> return ()
; Right KillResponse -> return () }

18 Note that messages are not lost when transitioning between tasks, since a Node keeps
global buffers of published and subscribed ROS topics.



An elegant language to teach the pure reactive nature of robot programming 23

The request and response types are automatically derived by roshask from
ROS service description files. Here, nodeTask embeds a Node within a Task. We
use default turtle names from their numbers and ignore service invocation errors.

Analogously to ROS actions, a Task can additionally be cancelled or provide
feedback during its execution. These features become evident when calling a task
from a controller:

call :: (Sensor when,Command see,Command res) => Task feedback end
-> CallOpts when feedback see end res -> Call

In order to conciliate tasks with the continuous nature of controllers, a call
produces a special Call event whose Command instance actually calls the task and
registers the necessary callbacks. Besides the called task, it receives the following
optional arguments (with sensible defaults in callOpts):

– A callback that can read any sensor to decide when to send a special Cancel
event to the abort the task; in such a case, the task does not produce its ter-
minating event end. Since tasks can themselves be a composition of smaller
tasks, when a composite task is cancelled the Cancel event is automatically
propagated to its sub-tasks.

– A callback that reads all feedback produced by the task, and issues a com-
mand that allows the controller to see part of it. Note that feedback is also
an argument of the Task type, and therefore must be the same for all sub-
tasks of a composite task. Task feedback can be changed using the operator
subTask :: (f1 -> Maybe f2) -> Task f1 a -> Task f2 a.

– A callback that takes the terminating event end and publishes it back to the
controller as a command res.

Combining tasks and controllers, we can readily define other high-level asyn-
chronous programming combinators in the style of the Haskell async library19,
e.g., to run two tasks concurrent in parallel and wait for both to terminate (re-
turning a pair) or cancel the other when one terminates (returning an option):

data PDone a = PDone { unPDone :: a }

lCallOpts = callOpts { feedback = Feedback . Left, response = PDone }
rCallOpts = callOpts { feedback = Feedback . Right, response = PDone }

parallel :: Task f1 a -> Task f2 b -> Task (Either f1 f2) (a,b)
parallel t1 t2 = task pdone (taskOpts { init = (c1,c2) })

where c1 = call t1 lCallOpts
c2 = call t2 rCallOpts
pdone (PDone a) (PDone b) = Done (a,b)

race :: Task f1 a -> Task f2 b -> Task (Either f1 f2) (Either a b)
race t1 t2 = task rdone (taskOpts { init = (c1,c2) })

where c1 = call t1 lCallOpts
c2 = call t2 rCallOpts
rdone = (Done . Left . unPDone,Done . Right . unPDone)

19 https://hackage.haskell.org/package/async

https://hackage.haskell.org/package/async


24 H. Pacheco, and N. Macedo

6 Conclusion
In this paper we have presented rosy, a new pedagogical robot programming
language that advocates a sweet-spot between the expressiveness of FRP and
the needed simplicity of an educational setting. As part of a computing summer
camp held at the University of Minho20, in July 2019, we have taught a 4-
hour training session for K12 students on hands-on robot programming in rosy,
where students are asked to program the robot to perform a series of simple
tasks in the style of our first four examples, with only two prior sessions of
general programming in Haskell. From our perceptions, students were able to
comprehend the concepts, quickly start programming and execute different tasks.

In the future, we plan to provide further rosy training sessions and undergo
empirical studies to corroborate its practical value for learning programming via
robotics. We plan to improve the rosy environment with more advanced simula-
tion scenarios using, e.g., the Gazebo web client21 or remote ROS support similar
to [6, 24]. Orthogonally, we intend to migrate rosy and roshask to ROS 2 in
order to explore the more modular support for ROS nodes composition.

We also plan to explore the design of novel novice-friendly interfaces that
blend textual and visual representations, including blocks, state machines or data
flow diagrams. To fulfill the appeal of declarative robot programming beyond
its pedagogical use, it would also be interesting to explore how students can
transition from rosy to roshask or other full-fledged FRP frameworks. On that
account, we are also interested in conducting more fundamental FRP research
on unifying roshask with mainstream FRP frameworks.
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