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Abstract. The development of ETL systems has been the target of many 
research efforts to support its development and implementation. In the last few 
years, we presented a pattern-oriented approach to develop these systems. 
Basically, patterns are comprised by a set of abstract components that can be 
configured to enable its instantiation for specific scenarios. Even when using 
high-level components, the ETL systems are very specific processes that 
represent complex data requirements and transformation routines. Several 
operational requirements need to be configured and system correctness is hard 
to validate, which can result in several implementation problems. In this paper, 
a set of formal specifications in Alloy is presented to express the structural 
constraints and behaviour of a slowly changing dimension pattern. Then, 
specific physical models can be generated based on formal specifications and 
constraints defined in an Alloy model, helping to ensure the correctness of the 
configuration provided. 
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1 Introduction 

The use of patterns is a recurrent practice in most software development areas, in 
which systems are frequently designed based on existing components, taking 
advantage of previous knowledge and experience. Nowadays, the importance of using 
reusable practices and the design techniques that promote them is recognized, 
contributing to higher software quality and to reduce time and money needed to its 
implementation and maintenance. Additionally, patterns enforce the use of well-
proven practices representing knowledge of broadly accepted standards and 
techniques [16]. The development of ETL (Extract-Transform-Load) processes for 
Data Warehousing Systems (DWS) represent a specific software area and a critical 
component to any DWS that addresses very specific needs [10]. Each DWS 
implementation serves its own user community linked to a specific set of business and 
decision-making processes supported by specific data models. Additionally, ETL 
designers frequently deal with legacy systems that provide limited mechanisms for 
data extraction, and data inconsistencies resulting from years of business change or 
evolution. All these require extreme care and concern from ETL architects and 



software engineers in its planning, architecture, design, and implementation. 
Moreover, current commercial tools that support ETL data migration implementation 
processes provide specialized transformation tasks resulting in very complex 
processes represented using proprietary notations and implemented according to 
specific architectures and philosophies. These practices are by nature error-prone and 
hard to maintain. Since the development of ETL processes shares several 
development phases and typical problems related to the other types of software, we 
believe that a pattern oriented approach can be applied through the identification of 
recurrent procedures or techniques, identifying the cluster of operations needed and 
abstracting its behaviour to provide its instantiation for specific cases. To support the 
complexity of the knowledge involved and the application of each pattern to specific 
contexts, a first approach to formalize ETL patterns is also presented using Alloy [9], 
a declarative specification language that supports problem structural modelling and 
validation. Thus, after a brief summary of related work in Section 2, we demonstrate 
in Section 3 the feasibility and effectiveness of a pattern-oriented approach for ETL 
development based on the description and formalization of one of the most common 
used ETL techniques: the Slowly Changing Dimension (SCD) with history 
maintenance (SCD-H). The operational requirements are identified and the respective 
structural constraints and behaviour formalized using Alloy. Finally, in Section 4, we 
evaluate the work done so far, pointing out some research guidelines for future work. 

2 Related Work 

Aiming to reduce ETL design complexity, the ETL modelling has been the subject of 
intensive research and many approaches to ETL implementation have been proposed 
to improve the production of detailed documentation and the communication with 
business and technical users. As far as we know, Köppen [11] firstly presented a 
pattern-oriented approach to support ETL development, providing a general 
description for a set of design patterns. The work focuses on important aspects 
defining patterns for internal composition properties and the relationship between 
them. However, patterns are represented only at design level, lacking the 
identification of the main configuration components that could be used to translate 
them to code. With this work, we intend to go further, encapsulating behaviour inside 
components that can be reused. In fact, we propose a generator-based reuse approach 
[5] that uses a generator system. The generator produces a specific instance that can 
represent the complete system or part of it, leaving physical details to further 
development phases. For that, we believe that a formal model that describes model 
constraints and behaviour is needed to support physical generation of ETL processes. 

The work presented by other authors should also be referred since represent some 
important contributions to the area. Vassiliadis and Simitsis proposed a technique for 
the conceptual, logical and physical modelling of ETL processes [17]. More recently, 
Akkaoui [4] presented a work based on MDA (Model-Driven Architecture) for ETL 
process development, covering the automatic generation of source code for specific 
computer platforms using a meta-model based on BPMN (Business Process Model 



and Notation). The bridge to execution primitives was explored using a model-to-text 
approach, supporting its execution through some ETL commercial tools. These and 
other related works [14, 18] revealed very important aspects that were taken into 
consideration for the approach presented here. However, they fail to provide an 
integrated approach that focus on the complete ETL lifecycle and to take advantage of 
work performed in initial development to implementation phases. Additionally, they 
focus on very granular tasks, resulting in very large and disorganized process, 
resulting in process inconsistencies and redundancy. 

3 ETL Patterns: SCD-H pattern 

Patterns have been used in several software development areas as a way to help 
developers solve recurring problems, promoting the sharing of experience and 
knowledge obtained across several areas. Patterns can be viewed as a three-part rule 
expressing the context, the forces that typically occur, and how the solution [8] 
resolves the forces [3]. Next, we will identify and formalize a common ETL 
procedure, namely a SCD-H transformation pattern, which is used to preserve 
changes in dimensions used to track historical data. A subset of common pattern 
description based structure [3][1] is used to describe its internal composition, 
complemented by a formalization model in Alloy. When a Data Warehouse (DW) is 
updated, some decisions must be considered in order to maintain a consistent view of 
its data. Any SCD process embodies well-defined policies representing design 
patterns to support old and new data over time in a DW dimension context. Several 
types of SCD can be applied [10], each one considering specific scenarios. In this 
work, a specific strategy of SCD that preserves history using an auxiliary history table 
is followed. Basically, this approach considers that any dimension integrates two 
distinct tables: one table to store up-to-date dimension’s data and other to store 
previous record versions. With this strategy all current and historical records are 
stored with no limitations and with low process complexity, since they are easier to 
compute than other approaches [15] - in Fig. 1 we present a specific template that can 
be used to describe a SCD-H pattern.  

Audit tables are used in the Data Staging Area (DSA) and provide the record for 
processing to SCD process according to the operation performed in source systems. 
When records are new, insert operations are triggered to the dimension table as 
current data, while the deleted records are marked as inactive in target dimension. A 
more complex process should be initiated for updated records, since the current 
versions of updated records should be transferred to history table, partially or totally, 
depending on the dimension table’s SCD specification. Depending on the needs, all or 
some of these operations can be registered in the system’s log file, identifying the 
record, the operation that was performed, the data source origin and temporal data. 
The quarantine table also plays an important role in a SCD process, since it supports 
unexpected scenarios that usually compromise processes. Records with structural 
errors or data entry errors can be redirected to quarantine tables that store all 
inconsistent records, identifying (at least) the record, the error that occurred and the 



temporal data associated. These records can be posteriorly analysed by specific 
procedures or even manually in order to be reintroduced in ETL workflow or deleted, 
helping to identify important scenarios that can be useful to check ETL integrity. 
 

Name: Slowly changing dimension, with history maintenance (SCD-H). 
Classification: Transformation pattern. 
Problem:  Dimension tables store data that can change slowly over time. In such cases, we 

need to track these changes to support historical data reporting. How can current and 
historical data be properly stored? 

Context: DWS are built based on the concept of temporal data. The facts stored in fact 
tables are linked to a specific date in which they occurred, as well as other dimensions 
that can be also affected by time. Data coming from information sources can be 
modified to reflect a change in a certain point of time that should be preserved in a 
specific dimension, in order to maintain the consistency of the data warehouse.  

Solution: The SCD process begins when the data that was changed is available for 
populating the target system. Typically, this data is stored using specific audit tables 
that keep records composed by the attributes (Att) with history maintenance (SCDAtt) 
for a specific dimension table along with the operation (Operation) that record was 
subject, the operation date (Date), and the dimension surrogate key (Skey): 𝑎𝑢𝑑𝑖𝑡𝐷𝑎𝑡𝑎 =
 𝑆𝑘𝑒𝑦, 𝑆𝐶𝐷𝐴𝑡𝑡!,… , 𝑆𝐶𝐷𝐴𝑡𝑡! ,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝐷𝑎𝑡𝑒 . 

 

Fig. 1. An example of a template for describing a SCD-H pattern 

Moreover, log track techniques also have an important role in a SCD-H pattern since 
they are used to recover the system from unexpected situations. For example, if some 
critical error happens, the process can restart only from the point when the error 
occurs, useful mainly when large volumes of data are involved. After processing all 
records, the audit table will be cleared and the records processed will be loaded into 
the target dimensional table. In order to support all these structural and operational 
constraints, we developed a specific model for representing the structure of the pattern 
(Fig. 2). This model represents a subset of the ETL patterns meta-model for the 
representation of the SCD structure and all the objects supporting its structure. The 
SCD class is a specific type of transformation patterns that can be specialized in 
several types if necessary. We distinguish only two types: one that holds no historical 
data (data is simply replaced by the new one) and another that keeps the history of the 
changes occurred in the dimension table. To support the SCD–H pattern, a specific set 
of metadata should be provided to produce the instances of the patterns. The 
DataObject class represents the several types of data source/target objects that can be 
used in SCD-H context. The Audit table holds data extracted from data sources and 
respective operation and time data, the Dimension that stores current data, the History 
that stores historical data for each record, the Quarantine that represents the object 
that stores noncompliant data, and the Log object that stores all operations performed. 
Each one of these objects will have fields from several types, revealing specific 
operational characteristics of each data object. For example, the state of each record 
(to signal active and inactive attributes) is identified using a specific field.  



 

 

Fig. 2. Class diagram for SCD pattern structure representation 

The correspondences between fields of each data source should be defined according 
to the constraints defined for each mapping: the auditToQuarantine relationship 
represents the mapping between audit table and dimension table, which is related to 
the source of data and target dimension, the auditToQuarantine that represents the 
mapping between the dimension table and the quarantine table to store fields that for 
some reason could not be stored in the target dimension, and the auditToLog that 
represents the relationship between the audit table and the target log object storing the 
operations performed, including the non-successful ones. The dimensionToHistory 
and auditToHistory relationships describe specific features of the SCD-H pattern, 
representing the mapping between dimension fields to history dimension fields, and 
audit table fields to history dimension fields, respectively. Although the pattern 
structure can be described in a straightforward manner using class models like the one 
presented in Fig. 2, such is not the case for several richer structural constraints that 
specify the integrity of the pattern. These must be considered not only at the level of 
the pattern configuration but also by the pattern operational behaviour. To provide a 
simple and solid specification of a SCD pattern amenable to being automatically 
analysed, its description was embedded into a formal specification.  

Alloy is a lightweight formal specification language, whose Analyser provides 
support for automatic assertion checking, within a bounded universe, by relying on 
off-the-shelf constraint solvers. The flexibility and object-oriented flavour of the 
Alloy language render it well-suited to specify and analyse software design models, 
addressing both complex structural constraints [2][12][7] and behavioural constraints 
imposed by transformations [6][13]. An embedding of ETL pattern specifications into 
Alloy would not only provide a formal specification of their structure and behaviour, 
but would also allow their fully automatic verification, ensuring that the pattern 
preserves the consistency of the system. Fig. 3 presents an excerpt of the Alloy 
specification of ETL patterns and related concepts, formalizing the meta-model 
structure and providing a new degree of detail to the class model presented before in 
Fig. 2. 



Fig. 3. Basic Alloy specification to support ETL patterns  

The class hierarchy can be easily described using Alloy signatures, introducing sets of 
elements of a certain type in the model. Abstract signatures are used to describe 
abstract concepts that should be refined by more specific elements, which is the case 
of top-level signatures Field, DataObject and Pattern. These abstract signatures can 
then be specialised through extension into concrete objects, mirroring the hierarchy of 
the model from Fig. 2. Signatures may contain fields of arbitrary arity, embodying the 
associations between the different artefacts of the specification. For instance, 
similarly to the Fig. 2 representation, data objects represent repositories that are used 
to read and write data and contain a set of field declarations that is shared by its 
extensions: each DataObject element is related to a non-empty set of Field elements 
(imposed by the keyword some) that represent data fields used to characterise records, 
and a set of SKField elements used to express the SK fields. These can then be 
restricted by additional constraints through Alloy facts, like the one stating that every 
SKField is selected from the data object Field elements. Signature mapping represents 
the association between fields from two data sources, establishing the relationship 
between attributes from two different sources through binary field association. 
Additional constraints impose, for instance, that a mapping is only valid if it 

abstract sig Field{} 
sig SKField, ControlField, VariationField, DescriptiveField extends Field{} 
sig DateField, OperationField, ErrorField extends ControlField{} 
 
abstract sig DataObject{fields: some Field, keys: some SKField, (...)} 
fact dataobject {all o : DataObject | o.keys in o.fields,(...)} 
 
pred consistentDataObject[s:State,o:DataObject] { 
 all r1,r2 : o.rows.s |  
  (all f : o.keys | f.(r1.values) = f.(r2.values)) => r1 = r2 
    (...) 
} 
sig Mapping {inData: one DataObject, outData: one DataObject, association: 
Field -> Field} 
fact mapping { 
 all m : Mapping | m.association in m.inData.fields -> m.outData.fields 
    (...) 
} 
pred consistentMapping[s:State,m:Mapping] { 
    consistentDataObject[s,m.inData] 
    consistentDataObject[s,m.outData] 
    (...) 
} 
abstract sig Pattern{} 
abstract sig TransformationPattern extends Pattern{} 
abstract sig SCD extends TransformationPattern{ 
    auditToDimension : one Mapping, 
    auditToQuarantine: one Mapping, 
    auditToLog: one Mapping 
} 
fact scd {(…)} 
sig SCDH extends SCD {dimensionToHistory: one Mapping, 
    auditToHistory:one Mapping} 
fact scdh {all scd : SCD { 
       scd.dimensionToHistory.inData in Dimension 
    (...) 
} 
 



associated fields from the input (inData) and the output (outData) data sources. Facts 
represent constraints that are enforced in the system. However, certain constraints 
should not be enforced but rather preserved by the ETL procedure - this denotes the 
notion of correctness in the specification. The behaviour of the patterns should then 
be checked to assess whether they guarantee the consistency of the system. These 
predicates include properties like the uniqueness of the values in SK fields and the 
referential integrity between the SK fields of the data sources associated to the 
mappings. Other relevant signatures, omitted in the figure, are specified in a similar 
manner, like those regarding the target and historical dimension and their respective 
constraints, as well as the log and quarantine objects. 

Fig. 4. Excerpt of the Alloy specification for SCD-H pattern for dynamic behaviour simulation 

The pattern signature is then specialised to represent SCD patterns, containing the 
expected mappings, like auditToDimension, auditToQuarantine and auditToLog. 
These fields describe the relationship between the audit object used for the SCD 
process and the respective target repositories: a dimension object that will receive 
data from audit table, a quarantine object that holds non-conformed data that was 
excluded from the dimension object, and a log object that will preserve all operations 
performed by the audit, dimension and quarantine objects. These mappings enable the 
preservation of variation, control, surrogate key and data fields between data objects, 
which are imposed by facts defined over both the SCD and the SCD-H signatures. For 
instance, for the dimensionToHistory, the correspondent mapping is established 
between a dimension object data as input and a history object data as output. 
Additionally, several signature facts were used to enforce the correctness of each 
mapping, i.e., that the mapping associates fields of the same nature. This means that 
related fields are correctly mapped and that invalid relationships are avoided. A 

sig State {} 
sig Value {} 
sig Row {values: Field -> lone Value} 
abstract sig DataObject{(...),rows: Row -> State} 
fact rows { 
    all s : State, o : DataObject, r : o.rows.s | r.values.Value = o.fields 
} 
pred addToDimension [s,s': State, r,r': Row, scd: SCD] { 
    r in scd.auditToDimension.inData.rows.s 
    r' not in scd.auditToDimension.outData.rows.s 
    scd.auditToDimension.inData.rows.s' =   
        scd.auditToDimension.inData.rows.s - r 
    scd.auditToDimension.outData.rows.s' =  
        scd.auditToDimension.outData.rows.s + r' 
    all f : scd.auditToDimension.association.Field |  
        f.(r.values) = f.(scd.auditToDimension.association).(r'.values)  

    (...) 

} 

assert addToDimensionCorrect { 

    all s: State, s': s.next, scd: SCD, r: Row |  

        (consistentSCD[s,scd] and addToDimension[s,s',r,scd]) => 

            consistentSCD[s',scd] 

} 

 



predicate is then defined to embody the notion of consistent SCD. In this case, this 
amounts for checking whether the mappings of SCD are themselves consistent, as 
defined above. This property can then be automatically processed by the Alloy 
Analyser, either to simulate instances that conform to the specification or to check for 
the correctness of concrete instances. The specification presented in Fig. 3 embodies 
the static constraints of ETL patterns. However, we are interested in checking the 
correctness of the process as data is collected from the sources and ETL procedures 
are executed. In Alloy, dynamic behaviour is encoded through well-established 
idioms, like the local state idiom followed in this work [9]. Roughly, a new signature 
State is introduced in the specification, representing different states of the system, 
modelling the notion of evolving time. Artefacts that are expected to evolve in time 
are then appended with a State element, denoting their value in each instant of time. 
In our scenario, only the data contained in each data object are expected to change - 
the structure of the data objects and the patterns is static. This dynamic version of the 
specification is presented in Fig. 4, where a Row signature was introduced to describe 
the association between a Field and a specific Value. Data objects were then extended 
to contain a dynamic row field representing its data in each instant of time. An 
additional fact restricts rows to assign values to the fields of the parent data object.  

The system evolution is then modelled through declarative predicates that relate 
two different states. Thus, if the static components of the specification represent the 
pattern configuration, dynamic components define the pattern behaviour based on 
those configurations. Fig. 4 depicts, as an example, the predicate addToDimension 
that models the behaviour of the pattern insert operation, involving the audit and 
target dimension objects. Being declarative, these definitions are usually comprised 
by pre-, post- and frame conditions. In this case, the pre-conditions restrict the 
operation to be applied only if the surrogate keys of the audit row that will be 
processed do not exist in the dimension table. Otherwise the update operation should 
be applied instead. The post-conditions state that the row is removed from the audit 
table and inserted in the target dimension, preserving the data as defined by the 
associations of the SCD mappings. The frame conditions state that every other 
artefact, like the history table, stays unchanged. The two states are represented by the 
predicate s and s’ parameters - whenever the rows field is annexed with the s elements 
it represents the data in the pre-state, while rows at s’ represents the data in the post-
state. Once these operation predicates are defined, the specification can be 
automatically analysed by the Alloy Analyser to check whether they preserve the 
consistency constraints defined above within a bounded universe. These are defined 
in the assert clause in Fig. 4, which tests whether the execution of the 
addToDimension operation preserves the consistency of the system. The check 
command effectively instructs the Alloy Analyzer to verify this assertion for a 
specific scope. It has shown that the three defined operations indeed preserve the 
specified consistency predicates, providing an increased level of confidence on the 
correctness of the procedure. Additional constraints and level of detail can be added 
to the specification to verify more complex properties.   



4 Conclusions and Future Work 

This paper proposed a pattern-oriented approach that allows for the implementation of 
ETL processes with a higher level of abstraction. With this pattern-oriented approach, 
the knowledge and best practices revealed by several works can be put in practice 
using a set of software patterns that can be applied to the ETL development life cycle: 
from model representation to its physical implementation primitives. A specific de-
sign pattern - SCD-H - was identified along with its skeleton, representing its struc-
ture, constraints and behaviour according to specific rules. The presented approach 
keeps a specific template and instance as separated layers, since users need to provide 
data about data, i.e., users describe data repositories and its contents in structural 
terms and a specific generator will generate the respective code based on the primi-
tives previously established and using specific data. The SCD-H pattern can be ap-
plied to any ETL scenario. To support this process an excerpt of a formal specifica-
tion in Alloy was presented, providing an automatic way for analysis and searching 
for false assertions through the generation of counterexamples. That way, patterns not 
only become easier to use than in the common granular approach, but can also be 
easily reused to produce better software, because models can be checked using a 
powerful simulation engine before its execution. This work is a first attempt to speci-
fy formally ETL patterns in Alloy, representing the static and behavioural specifica-
tions of a SCD-H pattern. At short term, a more complete Alloy specification for ETL 
patterns will be developed, particularly in what is concerned to behaviour formaliza-
tion, assertion checking and exception and error handling scenarios. Additionally, 
several other patterns need to be formalized to provide a complete package specifica-
tion for ETL patterns. A complete validation engine is also planned, translating the 
pattern configuration to Alloy models, allowing the ETL designers to seamlessly and 
automatically check the consistency of the developed patterns. 
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