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ABSTRACT
Models – at different levels of abstraction and pertaining to different
engineering views – are central in the design of railway networks, in
particular signalling systems. The design of such systems must fol-
low numerous strict rules, which may vary from project to project
and require information from different views. This renders manual
verification of railway networks costly and error-prone.

This paper presents EVEREST, a tool for automating the verifica-
tion of railway network models that preserves the loosely coupled
nature of the design process. To achieve this goal, EVEREST first
combines two different views of a railway network model – the
topology provided in signalling diagrams containing the functional
infrastructure, and the precise coordinates of the elements pro-
vided in technical drawings (CAD) – in a unified model stored in the
railML standard format. This railML model is then verified against
a set of user-defined infrastructure rules, written in a custom modal
logic that simplifies the specification of spatial constraints in the
network. The violated rules can be visualized both in the signalling
diagrams and technical drawings, where the element(s) responsible
for the violation are highlighted.

EVEREST is integrated in a long-term effort of EFACEC to im-
plement industry-strong tools to automate and formally verify the
design of railway solutions.

CCS CONCEPTS
• Applied computing→ Computer-aided design; • Comput-
ing methodologies → Model verification and validation; •
Software and its engineering→ Specification languages.
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1 INTRODUCTION
The design of railway signalling systems involves various teams,
with different expertise, working on different views of the system
design. One of the challenges of this activity is how information
is exchanged among the different teams and kept consistent in
the different views, typically a manual, and consequently, error-
prone process. Despite this challenge, the end goal is to produce a
design which meets the rules imposed by regulatory entities and
additional end-user specific requirements. This requires the design
to be verified, but for infrastructural requirements this is again a
task that is typically done manually, since most design tools do not
properly support the verification of such requirements.

This paper presents EVEREST (Efacec Verification of Railway nEt-
workS Tool), a toolset developed by EFACEC, a leading Portuguese
company in the area of railway signalling systems, in partnership
with academia. EVEREST provides mechanisms for synchronizing
and merging two different views of a railway network model: (a) the
topology provided in signalling diagrams describing the network’s
functional infrastructure (developed in tools such as RaIL-AiD1);
and (b) the precise coordinates of the elements of the physical
system as captured by standard technical drawings (drawn in Au-
toCAD2). The unified model resulting from this process, stored in
the railML® standard format3, can then be automatically verified
by EVEREST against a set of user-defined infrastructure rules. A
1https://www.rail-aid.com/, last visited May 12, 2022.
2https://www.autodesk.com/products/autocad/, last visited May 12, 2022.
3railML (Railway Markup Language) [17] is an open, XML-based format, that has
evolved to a de facto standard for data exchange of railway network models.

https://doi.org/10.1145/3550355.3552439
https://doi.org/10.1145/3550355.3552439
https://doi.org/10.1145/3550355.3552439
https://www.rail-aid.com/
https://www.autodesk.com/products/autocad/
https://wiki3.railml.org 
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(a) Signalling diagram as depicted by RaIL-AiD

(b) AutoCAD technical drawing

(c) Signalling diagram as depicted by EVEREST

Figure 1: Different views of the example area in the EVEREST
ecosystem after positioning and verification

key requirement in the development of EVEREST was to keep the
loosely coupled approach of the signalling design process, namely
allowing the different teams to still interact with the design tools
that better suit their concerns.

The main contributions of EVEREST are the following: a loosely
coupled and light-weight railway networkmodel verification
workflow, that blends the activity of signalling engineers and tech-
nical designers in an automated and non-intrusive way; a formal,
high-level language for expressing railway infrastructure
rules on top of railML models, that simplifies the specification of
spatial constraints in the network; an implementation of the
proposed methodology in a toolset with components that 1) en-
able RaIL-AiD and AutoCAD to inter-operate via railML models;
2) the subsequent automatic verification of conformance against a
catalogue of user-specified infrastructure rules; 3) reporting about
violated rules in the different views of the network model.

Paper structure. Section 2 presents in more detail the proposed
EVEREST workflow and toolset. Section 3 presents the language
proposed to defined infrastructure rules, while Section 4 details the
implementation of the various components of the toolset. Section 5
presents the evaluation of the verification capabilities of EVEREST.
Lastly, Section 6 compares the approach with related work and
Section 7 draws conclusions and points directions for future work.

2 EVEREST TOOLSET
The design of a railway signalling system usually involves two
teams, one of signalling engineers responsible for the signalling
system design that interacts with a railway design tool – in the
case of EFACEC, RaIL-AiD – and another of technical designers

Figure 2: Overview of the EVEREST workflow

responsible for integrating that design in the complete infrastruc-
ture that interacts with a technical drawing tool – in the case of
EFACEC, AutoCAD. Figure 1 shows these views for (part of) a real
(anonymized) area that will be used as a running example, namely
as a signalling diagram during railway design in Fig. 1a and as a
technical drawing in Fig. 1b (information introduced by EVEREST
is also shown, which is explained later). During development, the
two teams interact with each other and eventually agree on a con-
sistent view of the network model. At this point, in some cases
aided by a verification manager with expertise on the verification
of infrastructure rules, they manually assess whether the resulting
design conformed to the regulations imposed for that project.

Figure 2 provides an abstract overview of how EVEREST can
integrate this workflow. The two teams initially interact with the
usual tools, preserving the loosely coupled nature of the two en-
gineering tasks. However, EVEREST then merges the information
contained in both those models in a single network model repre-
sented in railML. Many railway design tools such as RaIL-AiD allow
the exporting of a network topology and the respective signalling
diagram to railML, but these models are incomplete, lacking the
precise location of infrastructure elements (namely signals), or the
precise length of track segments. This exportation into railML is the
first step towards merging the network information. Then, the ele-
ments in this railML are automatically imported into the technical
drawing to bootstrap the positioning process. Once the technical
designers position the elements, their precise coordinates are prop-
agated back into the railML model. This phase is supported by the
EVEREST AutoCAD plugin, that, among others, provides methods
to check that all elements are already positioned and have their
precise location calculated. The drawing in Fig. 1b already shows
(in white) the elements positioned along the track. This approach
solves the consistency problem as the two views are not concur-
rently updated, and technical designers are not expected to change
the signalling diagram nor signal engineers element locations.

After all precise locations and measurements are incorporated
in the railML model, the EVEREST toolset can be used for verifying
its conformance with required infrastructure rules. These rules
are written in a DSL supported by the EVEREST Rule Designer
component by a team aided by the verification manager, which
builds a catalog of rules transversal to the various projects of the
company. The language was designed to be simple enough so that
only basic knowledge of logic and formal specification is required
by members of this team. For instance, consider the rule stating
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rule := scope :: fol

scope := route | track
fol := multOp expr | expr exprComp expr

| expr numComp expr | spatial | expr
| ( fol ) | qtOp (var : expr),+ | fol
| fol binFormOp fol | not fol

spatial := everywhere [ range ] fol
| nowhere [ range ] fol
| somewhere [ range ] fol
| fol until [ range ] fol

qtOp := all | some
binFormOp := and | or | implies | iff
multOp := one | lone | some | no
expComp := in | =
numComp := < | > | ≤ | ≥
expr := var | railML | const | expr binNumOp expr

| unExpOp expr | ( expr ) | expr binExpOp expr
binExpOp := � | | | & | → | \
binNumOp := + | − | * | /
unExpOp := ~ | ^ | #
range := ( [ | ] ) [ expr ] � � [ expr ] ( ] | [ )
railML := id

var := id

const := number | string | true | false

Figure 3: Concrete syntax of the EVEREST rule language.

that no railway switches appear in the 20 meters following a signal.
In EVEREST, this would be written as:

route :: everywhere

(some signalIS implies everywhere [0 � � 20] no switchIS)

The rule language draws inspiration both from metric interval
linear temporal logic [3], with temporal modalities and time inter-
vals adapted to the spatial context, and the (first-order) relational
logic of Alloy [10], to simplify the navigation along the attributes
and children of the numerous elements in the railML schema. In
the rule above, the first identifier determines the scope of the rule.
Here, the rule will be evaluated for all the routes defined in the
signalling diagram, with attributes of routes implicitly projected for
each route being evaluated. A route is a unidirectional path for train
movements in the railway network, between an entry and an exit
signal, traversing switches that should be locked in a predefined
position by the interlocking system responsible for preventing con-
flicting train movements. Another possible scope is a track segment
between topological elements (for example, switches): if movement
is allowed in both directions two independent unidirectional track
segments are considered. The fact that all scope elements are uni-
directional is what allows us to use a linear model of space. For
example, the modal operator everywhere in the above rule quanti-
fies on all positions along each route, possible restricted by a range
interval. The identifiers that occur in the rules are those of the
railML model. The rule refers to signalIS and switchIS, that in
railML contain the physical characteristics of signals and switches
(the infrastructure level). If information about their function and us-
age was required (the interlocking level), signalIL and switchIL
should be used instead. Elements such as these, which now have a
precise location extracted from the technical drawing, are implic-
itly projected for each location. Thus, the rule simply states that in

every location of a route where there is some signal, in every other
location in the succeeding 20 meters there are no switches.

The EVEREST Rule Designer provides some support to write
and maintain this catalog of rules. A flexible type-checker is imple-
mented to detect badly written rules. Some basic versioning func-
tionalities are provided. Moreover, EVEREST supports the definition
of parameterized rules that can be instantiated for different projects,
and expression macros to simplify the writing of frequently occur-
ring expressions and tame the verbosity of railML, which frequently
requires a long navigation chain along attributes and children of
different elements to fetch the required information.

The interaction of the signalling designer with the EVEREST
Infrastructure Verifier is essentially selecting the rules relevant for
the current project from the catalog. Once the rules are selected,
the Verifier automatically evaluates them for the provided network
model, reporting any element of the scope that has violated the
rule. These are presented back to the different parties in different
perspectives: not only are they presented in the signalling diagram
of the EVEREST Visualizer, but are also integrated back into the
technical drawing. For our running example, violations were found
for the rule defined above: in one of the routes, switch Sw01 is too
close to signal S1. Figure 1c shows this violation reported in the
Visualizer (highlighting the violating route and Sw01), and Fig. 1b
its visualization in the technical drawing (Sw01 was labelled with
the description of the violated rule and painted in orange).

3 RULE LANGUAGE
As mentioned above, the EVEREST rule language draws inspiration
both from metric interval linear temporal logic [3] and Alloy [10].
To promote flexibility, it shares the Alloy motto that “everything is a
relation”. In particular, the railML network models over which rules
are evaluated will be represented by sets of relations, capturing the
different XML tags and attributes.

3.1 Syntax and Semantics
The full syntax of the EVEREST rule language is provided in Fig. 3.
The semantics of a formula will be defined over an abstract net-
work model𝑀 , a map that assigns to each railML tag or attribute 𝑖
a tuple set whose atoms are either constants or railML element
ids. For instance, 𝑀 (signalIL) could be {⟨SL1⟩, ⟨SL2⟩}, while
𝑀 (isVirtual) (isVirtual being one of the possible attributes
of element signalIL) could be {⟨SL1, true⟩, ⟨SL2, false⟩}.

As the location of the elements along the track is essential to the
evaluation of rules, we extract auxiliary information from railML
to support the definition of the semantics. Localized elements are
those containing a spotLocation children element in the railML
schema, such as switchIS or signalIS. A spot location is basically
a position along a track segment (denoted net element in railML)
with a direction (normal, reverse, or both, in relation to the origin
of the net element). This is the railML element whose information
is enriched with a precise location after the positioning is done
in the technical drawing. A localized element may have multiple
spot locations assigned, such as switches which are at the intersec-
tion of 3 net elements. We assume the existence of the following
functions, that can be derived a priori from a railML file: spots(𝑒),
the locations of element 𝑒; entry(𝑠), the locations where a scope 𝑠
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𝑀⟦𝑎 | 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠 ∪ 𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦𝑎 & 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠 ∩ 𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦𝑎 \ 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠\𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦𝑎 � 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠 • 𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦𝑎 → 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠 × 𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦~ 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠◦

𝑀⟦^ 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠+

𝑀⟦# 𝑏⟧𝑙𝑠 ≜ {⟨|𝑀⟦𝑎⟧𝑙𝑠 |⟩}

𝑀⟦𝑎 + 𝑏⟧𝑙𝑠 ≜ {⟨𝑛 +𝑚⟩} s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦𝑎 * 𝑏⟧𝑙𝑠 ≜ {⟨𝑛 ×𝑚⟩} s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦𝑎 / 𝑏⟧𝑙𝑠 ≜ {⟨𝑛 ÷𝑚⟩} s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}

𝑀⟦𝑖⟧𝑙𝑠 ≜ {𝑡 | 𝑡 ∈ 𝑀 (𝑖)↓𝑠 ∧
(𝑡 = ⟨𝑥⟩ ∧ 𝑥 ∈ 𝑑𝑜𝑚(spots)) ⇒ 𝑙 ∈ spots(𝑥))}

𝑀⟦𝑣⟧𝑙𝑠 ≜ 𝑀 (𝑣)
𝑀⟦𝑛⟧𝑙𝑠 ≜ {⟨𝑛⟩}
𝑀⟦𝑢⟧𝑙𝑠 ≜ {⟨𝑢⟩}
𝑀⟦true⟧𝑙𝑠 ≜ {⟨true⟩}

Figure 4: Semantics of the rule language expressions.

starts; dist(𝑠, 𝑙1, 𝑙2), the distance between locations 𝑙1 and 𝑙2 along
scope 𝑠; and between(𝑠, 𝑙1, 𝑙2, 𝑙), determining whether location 𝑙 is
between locations 𝑙1 and 𝑙2 along scope 𝑠 . Although scope elements
𝑠 (routes and tracks) are not localized, we abuse the notation and
have spots(𝑠) return all spot locations traversed by 𝑠 .

An expression 𝑎 is always evaluated in the context of a network
model𝑀 , and a location 𝑙 of a scope element 𝑠 . We denote this value
by 𝑀⟦𝑎⟧𝑙𝑠 , a tuple set calculated as defined in Fig. 4. Expressions
are essentially built by combining railML identifiers (along with
numeric, string, and Boolean constants) with relational and arith-
metic operators. Whenever an identifier is a railML property of a
scope element, it is implicitly projected on that element. Operation
𝑀 (𝑖)↓𝑠 projects identifier 𝑖 if its domain is the scope type, leaving
it unchanged otherwise. For instance, routeEntry relates routes
with their entry signal (at interlocking level). A possible value for
this identifier would be 𝑀 (routeEntry) = {⟨R1, SL1⟩, ⟨R2, SL2⟩}.
In a rule with scope route, a call to routeEntry is projected on
each scope element. For example, when evaluating a rule for route
R1 we would have 𝑀⟦routeEntry⟧𝑙R1 = {⟨SL1⟩}. In a rule with
scope track the full binary relation would be returned. Localized
elements are also filtered according to the current location 𝑙 . If an
identifier 𝑖 refers to a localized element, it is only considered if
the current 𝑙 is among is locations. Constants are also interpreted
as tuple sets to allow combination with other expressions, so, for
instance, constant 1 is interpreted as the tuple set {⟨1⟩}.

Like Alloy, the fundamental relational operation is composition
( � ), which simplifies the navigation along children elements and
attributes. For example, routeEntry � isVirtual in a rule with
scope route determines whether the respective entry signal is

𝑀⟦everywhere 𝑟 𝜙⟧𝑙𝑠 ≜
∀𝑙 ′ ∈ spots(𝑠) | dist(𝑠, 𝑙, 𝑙 ′) ∈ 𝑀⟦𝑟⟧𝑙𝑠 ⇒ 𝑀⟦𝜙⟧𝑙 ′𝑠

𝑀⟦nowhere 𝑟 𝜙⟧𝑙𝑠 ≜

∀𝑙 ′ ∈ spots(𝑠) | dist(𝑠, 𝑙, 𝑙 ′) ∈ 𝑀⟦𝑟⟧𝑙𝑠 ⇒ ¬𝑀⟦𝜙⟧𝑙 ′𝑠
𝑀⟦somewhere 𝑟 𝜙⟧𝑙𝑠 ≜

∃𝑙 ′ ∈ spots(𝑠) | dist(𝑠, 𝑙, 𝑙 ′) ∈ 𝑀⟦𝑟⟧𝑙𝑠 ∧ 𝑀⟦𝜙⟧𝑙 ′𝑠
𝑀⟦𝜙 until 𝑟 𝜓⟧𝑙𝑠 ≜

∃𝑙 ′ ∈ spots(𝑠) | dist(𝑠, 𝑙, 𝑙 ′) ∈ 𝑀⟦𝑟⟧𝑙𝑠 ∧ 𝑀⟦𝜙⟧𝑙 ′𝑠 ∧
∀𝑙 ′′ ∈ spots(𝑠) | between(𝑠, 𝑙, 𝑙 ′, 𝑙 ′′) ⇒ 𝑀⟦𝜓⟧𝑙 ′′𝑠

𝑀⟦[ 𝑎 � � 𝑏 ]⟧𝑙𝑠 ≜ [𝑛,𝑚] s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦[ 𝑎 � � 𝑏 [⟧𝑙𝑠 ≜ [𝑛,𝑚[ s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦[ 𝑎 � � [⟧𝑙𝑠 ≜ [𝑛,∞[ s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩}
𝑀⟦] 𝑎 � � 𝑏 ]⟧𝑙𝑠 ≜ ]𝑛,𝑚] s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦] � � 𝑏 ]⟧𝑙𝑠 ≜ ] − ∞,𝑚] s.t. 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦] 𝑎 � � 𝑏 [⟧𝑙𝑠 ≜ ]𝑛,𝑚[ s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}
𝑀⟦] � � [⟧𝑙𝑠 ≜ ] − ∞,∞[

𝑀⟦not 𝜙⟧𝑙𝑠 ≜ ¬𝑀⟦𝜙⟧𝑙𝑠
𝑀⟦𝜙 and𝜓⟧𝑙𝑠 ≜ 𝑀⟦𝜙⟧𝑙𝑠 ∧ 𝑀⟦𝜓⟧𝑙𝑠
𝑀⟦all 𝑣 : 𝑎 | 𝜙⟧𝑙𝑠 ≜ ∀𝑡 ∈ 𝑀⟦𝑎⟧𝑙𝑠 : 𝑀⊕𝑣 ↦→{𝑡 }⟦𝑎⟧𝑙𝑠

𝑀⟦𝑎 in 𝑏⟧𝑙𝑠 ≜ 𝑀⟦𝑎⟧𝑙𝑠 ⊆ 𝑀⟦𝑏⟧𝑙𝑠
𝑀⟦some 𝑎⟧𝑙𝑠 ≜ |𝑀⟦𝑎⟧𝑙𝑠 | > 0
𝑀⟦lone 𝑎⟧𝑙𝑠 ≜ |𝑀⟦𝑎⟧𝑙𝑠 | ≤ 1
𝑀⟦𝑎⟧𝑙𝑠 ≜ 𝑥 = true s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑥⟩}
𝑀⟦𝑎 < 𝑏⟧𝑙𝑠 ≜ 𝑛 < 𝑚 s.t. 𝑀⟦𝑎⟧𝑙𝑠 = {⟨𝑛⟩} ∧ 𝑀⟦𝑏⟧𝑙𝑠 = {⟨𝑚⟩}

Figure 5: Semantics of the rule language formulas.

virtual. Composition is defined as follows:

𝑅 • 𝑆 ={⟨𝑟1, . . . , 𝑟𝑛−1, 𝑠2, . . . , 𝑠𝑚⟩ |
⟨𝑟1, . . . , 𝑟𝑛⟩ ∈ 𝑅 ∧ ⟨𝑠1, . . . , 𝑠𝑚⟩ ∈ 𝑆 ∧ 𝑟𝑛 = 𝑠1}

for relations 𝑅 and 𝑆 with arity 𝑛 and𝑚, respectively. Other rela-
tional operators include union (|), intersection (&), difference (\),
Cartesian product (→), converse (~) and transitive closure (^). The
cardinality of an expression can also be retrieved (#). Arithmetic
operations are only well-defined when the value of the operands
is a singleton set (i.e., exactly one tuple of arity one). Otherwise,
a runtime error will be thrown. Note that such errors cannot be
detected statically by the type-checker (to be presented shortly),
since it only infers the type of the expressions, and not their cardi-
nality. For instance, an arithmetic expression involving the optional
integer attribute approachSpeed of signals, like in rule

track :: everywhere

(all s : signalIS | s � approachSpeed < 100)

will type check and be correctly evaluated as long as every signal
in the network under analysis has an approachSpeed assigned to.

Formulas combine these expressions using operators from (first-
order) metric interval temporal logic, interpreted in the spacial
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setting. The semantics of a formula 𝜙 is defined as 𝑀⟦𝜙⟧𝑙𝑠 , deter-
mining whether 𝜙 holds under model 𝑀 for scope element 𝑠 at
location 𝑙 , and is defined in Fig. 5 for a kernel of the language, from
which the remaining operators can be easily derived.

Spatial properties (the first block in Fig. 5) are built with the unary
everywhere (property holds in all positions), nowhere (property
holds in no position) and somewhere (property holds in some po-
sition), and binary until (a property holds in some position and
another hold must hold until there). We adopt a point-wise seman-
tics, meaning a formula is only evaluated at spot locations along 𝑠
where there is some localized element in𝑀 . These quantifiers can
be restricted by ranges (the second block in Fig. 5), including nega-
tive values. For instance, a quantification everywhere [−10,10]𝜙
evaluates 𝜙 in all positions between 10 meters before and 10 me-
ters beyond the current position. By omission, the default range is
[0 � � [, i.e., all positions succeeding the current position.

Spatial properties are combined with the typical Boolean connec-
tives (and, or, implies and iff) and first-order quantification (all
and some) (third block in Fig. 5). Abusing notation, the valuation
𝑀 is also used to store the value of quantified variables. Atomic
formulas (last block in Fig. 5) either determine if an expression is
contained in another (in), the cardinality of an expression (one,
lone, some and no), or, in the case of numerical expressions, integer
inequalities. Likewise arithmetic expressions, some of these have
side conditions. Such is the case of Boolean expressions (must eval-
uate to the singleton tuple {⟨true⟩}) and the numeric inequality
operations (the operands must evaluate to a singleton number).

Complete rules are created by assigning a scope to a formula. We
denote the semantics of a rule 𝑆 :: 𝜙 under model𝑀 as 𝑀⟦𝑆 :: 𝜙⟧.
Evaluating such a rule requires evaluating 𝜙 for all elements of the
scope from the respective starting position, i.e.:

∀⟨𝑠⟩ ∈ 𝑀 (𝑆) | 𝑀⟦𝑆 :: 𝜙⟧entry(𝑠)𝑠

3.2 Type system
EVEREST rules must obey certain type rules. Inspired by light-
weight type-systems for relational logic [7], the type of an EVEREST
expressions is itself also a tuple set whose atoms are atomic types
(i.e., number, string, bool or elements of the railML schema). This
allows the type of an expression to be calculated by applying the
same relational operators at the type level. To calculate the type of
an expression, we need a typing context Γ for the railML identifiers
extracted from the railML schema. This typing context is defined
in a configuration file, described in the next section. We denote the
fact that an expression 𝑎 has type 𝑇 with arity 𝑛 under the typing
context Γ and scope type 𝑆 as Γ ⊢𝑆 𝑎 ⊆ 𝑇𝑛 .

Most relational operators essentially test the arity of the expres-
sions. For instance, a union is well-typed if both operands have the
same arity, a rule defined as:

Γ ⊢𝑆 𝑎 | 𝑏 ⊆ (𝑇 ∪𝑈 )𝑛 ≡ Γ ⊢𝑆 𝑎 ⊆ 𝑇𝑛 ∧ Γ ⊢𝑆 𝑏 ⊆ 𝑈𝑚 ∧ 𝑛 =𝑚

Quantifier ranges and arithmetic operators require expressions
to be numbers with arity 1 (a set). For instance, the rule for addition
is defined as:

Γ ⊢𝑆 𝑎 + 𝑏 ⊆ {⟨𝑛𝑢𝑚𝑏𝑒𝑟 ⟩}1 ≡ Γ ⊢𝑆 𝑎 ⊆ {⟨𝑛𝑢𝑚𝑏𝑒𝑟 ⟩}1 ∧
Γ ⊢𝑆 𝑏 ⊆ {⟨𝑛𝑢𝑚𝑏𝑒𝑟 ⟩}1

Figure 6: Infrastructure Verifier of the EVEREST toolset

The scope type 𝑆 is essentially used to get the type of identifiers
that should be projected when the domain is 𝑆 , namely:

Γ ⊢𝑆 𝑖 ⊆ 𝑇𝑛 ≡ Γ(𝑖)↓𝑆 ⊆ 𝑇𝑛 ∧ 𝑛 > 0

In this typing rule 𝑇↓𝑆 has a similar behaviour as before. For in-
stance, since Γ(routeEntry) = {⟨route, routeEntry⟩}, we have
Γ(routeEntry)↓route = {⟨routeEntry⟩}.

As an example of type inference for expressions, we have

Γ ⊢route routeEntry � refersTo � ref ⊆ {⟨signalIL⟩}1

because:
Γ ⊢route routeEntry ⊆ {⟨routeEntry⟩}1
Γ ⊢route refersTo ⊆ {⟨routeEntry, routeEntryRef⟩, . . .}2
Γ ⊢route ref ⊆ {⟨routeEntryRef, signalIL⟩, . . .}2

Once the type of expressions is calculated, formulas𝜙 can be type-
checked.We say that a formula𝜙 is well-typed under typing context
Γ for type scope 𝑆 when Γ ⊢𝑆 𝜙 . Spatial and first-order logic oper-
ators essentially propagate type-checking to their operands. If an
expression appears as a formula, then it must have a Boolean type,
and arithmetic inequities must compare numeric expressions. Inclu-
sion formulas additionally test the relevance of the sub-expressions,
reporting an irrelevance error if they have nothing in common:

Γ ⊢𝑆 𝑎 in 𝑏 ≡ Γ ⊢𝑆 𝑎 ⊆ 𝑇𝑛 ∧ Γ ⊢𝑆 𝑏 ⊆ 𝑈𝑚 ∧
𝑛 =𝑚 ∧𝑇 ∩𝑈 ≠ ∅

For instance, rule
route :: routeEntry � refersTo � ref in speedSection

would not type check because:

Γ ⊢route routeEntry � refersTo � ref ⊆ {⟨signalIL⟩}1
Γ ⊢route speedSection ⊆ {⟨speedSection⟩}1

Lastly, we say that an EVEREST rule 𝑆 :: 𝜙 is well-typed under
typing context Γ, denoted by Γ ⊢ 𝑆 :: 𝜙 , when Γ ⊢𝑆 𝜙 .

4 IMPLEMENTATION
The EVEREST toolset incorporates two main tools, the EVEREST
Design Verification tool and the EVEREST AutoCAD plugin.

4.1 EVEREST Design Verification tool
Main components. The EVEREST Design Verification tool is a

standalone application developed in C# with the Windows Presen-
tation Foundation (WPF), with three main components. The Rule
Designer enables users to create EVEREST rules and manage a
rule catalog. For each project, users can select which rules in the
catalog should be evaluated. To simplify this process, functionalities
such as rule editing, cloning, deleting and grouping are provided.
Before adding a rule to the catalog, its syntax and type correctness
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<railML>

<infrastructure><topology>...</topology>

<functionalInfrastructure>

<signalsIS>

<signalIS id="S1"><spotLocation netElementRef="ne1"

applicationDirection="reverse" pos="149"/></signalIS>

<signalIS id="S2"><spotLocation netElementRef="ne2"

applicationDirection="reverse" pos="8.8"/></signalIS>

<signalIS id="S3"><spotLocation netElementRef="ne3"

applicationDirection="normal" pos="14.9"/></signalIS>

</signalsIS>...

</functionalInfrastructure>

</infrastructure>

<interlocking>

<assetsForIL>

<signalsIL>

<signalIL id="SL1"><refersTo ref="S1"/></signalIL>

<signalIL id="SL2"><refersTo ref="S2"/></signalIL>

<signalIL id="SL3" isVirtual="true"><refersTo

ref="S3"/></signalIL>

</signalsIL>

<routes>

<route id="R1">

<routeEntry id="E1"><refersTo ref="SL1"/></routeEntry>

<routeExit id="X1"><refersTo ref="SL2"/></routeExit></route>

<route id="R2">

<routeEntry id="E2"><refersTo ref="SL2"/></routeEntry>

<routeExit id="X2"><refersTo ref="SL3"/></routeExit></route>

</routes>...

</assetsForIL>

</interlocking>...

</railML>

Figure 7: railML excerpt

is checked, according to the rules defined in Section 3.2. The Infras-
tructure Verifier evaluates the selected rules against the railML
models of the current project, generating violations for each failed
rule (see Fig. 6). Rule evaluation strictly follows the semantics de-
fined in Section 3.1. Note that this process does not require solving
because all free identifiers in the rules are defined in the railML
model. Rule parsing was implemented with ANTLR [19], with eval-
uation, syntax and type-checking implemented via callbacks in the
abstract syntax tree. The Network Visualizer allows the visual-
ization, in a WPF Canvas, of the current signalling diagram. It also
provides route and track highlighting and, in case of rule violations,
highlights the failing scope elements.

railML processing. The implementation of EVEREST relies on a
railML library, also developed in C#, whose main goal is to process
railML files and extract relevant information. In particular, it ex-
tracts all the topology and signalling information needed for the
Visualizer. It also computes the information needed for the Verifier,
namely the abstract network model 𝑀 of the railML file, and the
auxiliary functions spots, entry, dist, and between.

The network model, as defined in Section 3.1, is a mapping from
railML tags and attributes to a tuple set. To build this map only
the <infrastrutcure> and <interlocking> railML sub-schemas
are considered, and inside these we only consider the content of
the <functionalInfrastrutcture> and <assertsForIL> tags,
respectively, which group all relevant elements. For each of the
main railML elements a set is created in the model. The railML

identifier of the element (in the id attribute) is used to denote the
respective atoms. For example, from the railML excerpt in Fig. 7,
the following sets would be added to the model:

signalIS ↦→ {⟨S1⟩, ⟨S2⟩, ⟨S3⟩}
signalIL ↦→ {⟨SL1⟩, ⟨SL2⟩, ⟨SL3⟩}
route ↦→ {⟨R1⟩, ⟨R2⟩}

Then, for each children tag, the respective binary relation associ-
ating it with its parent is added to the model. If the tag has an id
attribute, that identifier is used. Otherwise a new unique identifier
is created (represented in italics below). In the case of the railML
excerpt, the following relations would be added to the model:

routeEntry ↦→ {⟨R1, E1⟩, ⟨R2, E2⟩}
routeExit ↦→ {⟨R1,X1⟩, ⟨R2,X2⟩}
refersTo ↦→ {⟨SL1, 1⟩, ⟨SL2, 2⟩, ⟨SL3, 4⟩,

⟨E1, 4⟩, ⟨E2, 5⟩, ⟨X1, 6⟩, ⟨X2, 7⟩}
Finally, the binary relations associating each element with the re-
spective attributes are also added to the model:

isVirtual ↦→ {⟨SL3, true⟩}
ref ↦→ {⟨1, S1⟩, ⟨2, S2⟩, ⟨3, S3⟩

⟨4, SL1⟩, ⟨5, SL2⟩, ⟨6, SL2⟩, ⟨7 , SL3⟩}
The <spotLocation> is ignored in this process, but is used to

compute the spots of localized elements. Abstractly, a location is a
triple that identifies the net element, the respective direction, and a
position in the net element. We normalize these locations, storing
in the spots function all the equivalent locations of an element. For
example, for elements located in the extremity of a net element
we also store the locations in the extremity of the connected net
elements, if any (that is the case of switches, for example).

To compute the spots of tracks and routes, first the sequence
of track segments of each route and track must be computed. For
tracks that is given directly in the railML schema. In the case of a
route it can be computed by following it from the track segment
where the entry is located until the respective exit, taking into
account the branching position of the facing switches. In the case
of our railML example, there are no switches, and route R1 traverses
segments ne1 and ne2, while route R2 traverses segments ne2 and
ne3. From this sequences we can compute the spots of each route
and track. The entry location of scope elements is trivial to compute.
For computing the dist between two locations one must consider
their position in the respective net elements, as well as the length
of all net elements in between (the information about net elements
is contained in the tag <topology>, whose content was omitted in
Fig. 7). The between function is easily computed from the respective
locations and the sequence of net elements of each route or track.

Configuration file. The main goal of the EVEREST configuration
is to define which railML elements should be loaded into model𝑀 ,
as well as the respective typing context Γ to be used in the type-
checker. As explained in Section 3.2, types are tuple sets of atomic
types. The user is free to chose the atomic types in the configuration
file. In general there will be a single atomic type per railML tag,
but for tags with multiple parent elements it might be a good idea
to further discriminate to increase the precision and usefulness of
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"id", "type", "macro definition"

"route", "{[route]}"

"signalIS", "{[signalIS]}"

"signalIL", "{[signalIL]}"

"routeEntry", "{[route,routeEntry]}"

"routeExit", "{[route,routeExit]}"

"isVirtual", "{[signalIL,bool]}"

"refersTo", "{[routeEntry,refersToSignalIL],

[routeExit,refersToSignalIL], [signalIL,refersToSignalIS],..."

"ref", "{[refersToSignalIS,signalIS],

[refersToSignalIL,signalIL],..."

"entrySignal", "{[route,signalIL]}", "routeEntry.refersTo.ref"

"exitSignal", "{[route,signalIL]}", "routeExit.refersTo.ref"

Figure 8: EVEREST configuration file excerpt

the type-checker. Figure 8 presents an excerpt of a possible con-
figuration file. Notice how several atomic types where created for
refersTo, so that more precise information about the type of the re-
ferred element can be obtained. If a single atomic type was used for
refersTo, the type of expression routeEntry � refersTo � ref in
a route context would no longer be just {⟨signalIL⟩}, but instead
contain almost all railML elements, which would be undesirable.

The configuration file also allows the definition ofmacros. These
are essentially expression abbreviations that can be used when
defining rules, being replaced in-place before evaluation. Macros
help tame the, sometimes, cumbersome verbosity and high level
of indirection of railML. For instance, to retrieve the infrastruc-
ture view of the entry signal of a route, one would have to write
routeEntry � refersTo � ref, which in the example configuration
file we abbreviate as macro entrySignal. Once defined in the con-
figuration file, they are treated as any other railML identifier, their
value being calculated and assigned to𝑀 during railML processing.

Rule boilerplates. To ease the writing of rules that have similar
shape, but vary in concrete parameters, such as safety distances,
EVEREST supports the definition of rule boilerplates in the catalog.
These have placeholder identifiers, marked with $, that must be
assigned concrete values when instantiated. For example, a very
convenient boilerplate rule is the following generalization of the
rule presented above, stating that in every route an element of type
𝐴 cannot be followed by an element of type 𝐵 in the next 𝑑 meters.

route :: everywhere

(some $A implies everywhere [0 � � $d] no $B)

4.2 EVEREST AutoCAD plugin
The EVEREST AutoCAD plugin is an AutoCAD extension, whose
goal is to support the positioning of signalling elements in the tech-
nical drawing, and updating a railML model with the precise length
of track segments and the precise location of localized elements,
information needed to verify rules.

Users can interact with the plugin by executing its AutoLisp
commands. Typically, a plugin command receives the required user
input, invokes the backend, and updates the technical drawing with
the results. The backend is a C# console application that relies on
the netDXF library4 to process AutoCAD drawings and perform

4https://github.com/haplokuon/netDxf, last visited May 12, 2022.

Figure 9: Signalling diagram imported into a CAD drawing

the required calculations for the plugin. Moreover, the plugin uses
a block library to draw the various infrastructure elements, such
as switches, borders, and signals. Each railML block defined in this
library contains the following five attributes necessary to deter-
mine its precise location and depict any reported violations: ID,
the railML identifier; NAME, the railML name attribute; NETELEMENT,
the identifier of the net element where the element is located; POS,
the precise location of the element along the net element, initially
empty and updated after positioning; and ERROR, with the possible
violations detected by the Verifier.

The main functionalities of the plugin are the following.

railML import. To start the element positioning process, the
signalling diagram in a railML file is imported into the technical
drawing. This CAD signalling diagram is drawn in a user-defined
position and layer, using the block library to draw each net element.
It serves as a guide for the technical designers to correctly place (by
just moving) the various infrastructure elements in their precise
locations. The result for our running example is presented in Fig. 9.

Identification of net elements. To compute the lengths of track
segments and the precise locations of elements, it is necessary to
identify in the technical drawing the lines corresponding to the
various net elements of the signalling diagram. To help with that
task, the plugin provides commands to break lines (typically, in the
technical drawing a single line corresponds to a track spanning
various net elements) and label the resulting segments with the
corresponding identifier. Moreover, users can run a verification
command to check if all net elements are already correctly labelled,
with the feedback being depicted by different colors in the CAD sig-
nalling diagram: a green net element indicates a correctly labelled
segment was found, a red color indicates an incorrectly labelled
segment, and orange a missing label. A net element is correctly
labelled if the expected elements are already placed in its extrem-
ities (typically switches, buffer stops, or borders). There is also a
command to draw missing net elements in the technical drawing
(as straight lines between the elements defining the extremities).

Computation of lengths and positions. After the labelling process
and positioning of all infrastructure elements in the technical draw-
ing, users can execute a command that updates the railML model
with the precise length of all net elements and location of the local-
ized elements, which is stored in the pos attribute of the respective

https://github.com/haplokuon/netDxf
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<spotLocation> tags. This is done through AutoCAD functions that
determine the length of an arbitrary line and the distance (along
the line) between its begin point and any other point in it.

Visualization of violations. Rule violations detected during ver-
ification are imported and depicted in the technical drawing, by
storing the respective descriptions in the ERROR attribute of rele-
vant elements and changing the color of their attributes to orange.
Figure 1b shows precisely the result of invoking this command, with
a switch violating the example rule given in Section 2, requiring
that no switches appear in the 20 meters following a signal.

5 EVALUATION
Our evaluation aimed to answer the following research questions:

RQ1 Is the rule language expressive enough to specify typical
infrastructure constraints of railway network models?

RQ2 Is the infrastructure verifier efficient enough to evaluate
the rules in realistic network models?

5.1 Rule expressiveness
To evaluate RQ1we specified a catalog of rules relevant in the design
of railway networks for light rail solution, an application area where
EFACEC has vast experience in providing signalling systems. We
found that most of the rules fall into one of four categories:

Existence of elements. In this category we have rules requiring
certain elements to be present (or absent) in the network. Some vari-
ants include requiring that if a certain element is present another
related element should also be present. Typically they are specified
with the track scope, since we want to check them independently
of the defined routes. As an example consider the following rule,
requiring that every virtual signal is the exit signal of some route.

track :: all s : signalIL |

s � isVirtual implies some exitSignal � s

Here, exitSignal is the macro defined in Fig. 8 that associates a
route with the respective signalIL. Expression exitSignal � s
determines the set of routes of which signal s is the exit signal,
which the rule requires to be non-empty if s is virtual. This is a
degenerate rule that does not use the modal spatial operators, since
it is not concerned with the actual location of elements. Many rules
in this category are degenerate in this sense. To evaluate RQ2 we
used 6 rules in this category (#1 to #6), this being rule #2.

Order of elements. In this category we have rules requiring that
elements appear in certain order. For example, the first switch after
entering an area must be preceded by a train detection element, to
ensure the switch is in a Track Vacancy Detection (TVD) section.
Since entry tracks have a border element at the beginning, this
rule could be specified as follows.

track :: some border implies everywhere

(some switchIS implies

somewhere ] � � 0[ some trainDetectionElement)

Here we use the somewhere operator with a (open-ended) negative
range to check that somewhere before a switch there is the required
train detection element. Such negative ranges are very convenient

in the specification of these category of rules. To evaluate RQ2 we
used 2 rules in this category (#7 and #8), this being rule #7.

Distance between elements. This is a very common category. Most
rules follow the boilerplate presented in the previous section, that
requires a minimum distance between two kinds of elements. As
an example, we have a slight (more realistic) variation of the rule
presented in Section 2, requiring a minimum distance of 50 meters
between every signal and a facing switch.

route::everywhere (some signalIS implies

everywhere [0 � � 50] no (switchIS &

facingSwitches � refersTo � ref))

Here expression facingSwitches is a macro that obtains the inter-
lock view of the facing switches of a route (of type switchIL). By
composing with refersTo � refwe obtain the respective infrastruc-
ture view (of type switchIS). And finally, by intersecting with set
switchIS (which is implicitly project for each location) we restrict
the resulting set to those switches actually located in the 50 meters
following a signal. Some rules require enforcing, not minimum, but
maximum distances between the occurrence of certain elements.
For example, in networks with an Automatic Train Protection (ATP)
system every (non-virtual) signal is required to have a balise (a
transponder) nearby. This could be specified as follows.

track::everywhere (some s: signalIL |

not s � isVirtual implies somewhere [−1 � � 0[ some balise)

To evaluate RQ2 we used 6 rules in this category (#9 to #14), the
above rules being #9 and #12, respectively.

Element coverage. In this category we have rules requiring the
network to be covered by certain elements. The most relevant of
this rules is one requiring every track to be correctly covered by
TVD sections. Specifying this rule directly is not easy since cur-
rently the railML model does directly associate TVD sections with
tracks. However, it can be specified indirectly by a combination of
three different rules requiring: 1) every buffer stop to be a demar-
cator of one TVD section; 2) every train detection device to be a
demarcator of two TVD sections; 3) with the exception of the last
or first train detection devices in an area that demarcates exactly
one TVD section. This exceptional case can be specified as follows.

track :: everywhere (all t : trainDetectionElement |

#(hasDemarcatingTraindetector � ref � t) = 1 implies

((somewhere [0 � � [ some border) and

(everywhere ]0 � � [ no trainDetectionElement) or

(somewhere ] � � 0] some border) and

(everywhere ] � � 0[ no trainDetectionElement)))

A train detection device in an area is the last one if it is in a track
with some border afterwards, and, obviously, no more train detec-
tion devices. Likewise for the first train detection device. For RQ2
we used these 3 rules (#15 to #17), the above rule being #17.

Discussion. So far the rule language proved expressive enough
to specify all the example constraints provided by the signalling en-
gineering team at EFACEC. Due to the modal spatial operators and
implicit scope and location projection, many rules can be specified
with a very terse and rather readable style. The main issue with
readability stems from the verbosity and redundancy of the railML
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Table 1: Area size (quantity of elements)

A B C D E

tracks 1 8 10 12 33
routes 3 5 4 10 46
signalsIS 4 4 6 10 32
switchesIS 0 4 4 6 18
borders 0 2 0 6 2
bufferStops 2 2 4 0 10
trainDetectionElements 3 6 6 11 30
balises 0 0 0 7 17

schema, namely the two different views for each element and the
high level of indirection connecting related elements. As the exam-
ple coverage rule showed, the way information is stored in railML
sometimes also does not allow a direct encoding of a constraint,
requiring an alternative formulation that was not always trivial to
define. Note that the linear nature of the language semantics does
not allow the specification of rules that require reasoning about
arbitrary paths in the network, for example requiring a minimal
distance between two signals along any path (not necessarily in a
route or track). However, such constraints did not occur so far in
the projects verified with EVEREST.

5.2 Rule verification efficiency
To evaluate the efficiency of the Verifier we selected a set of 5
network models of real areas from a light railway project for which
EFACEC was contracted to develop the signalling system. These
areas vary in size and diversity of elements. Table 1 presents the
respective number of tracks, routes, and other elements. The names
or areas are anonymized, D being our running example area. Area
E is an example of a complex area, corresponding to a depot area
with several tracks for parking vehicles and maintenance activities.
The remaining areas are less complex and encompass the typical
light rail stations. All the measurements were performed in an
off-the-shelf PC laptop with a 2.6GHz Intel i7 CPU and 32GB RAM.

There are two relevant aspects concerning efficiency. First, we
have the time needed to process the railML models, to populate the
abstract network model and compute the auxiliary functions spots,
entry, dist, and between. This process, described in Section 4.1, is
executed only once per area, when opening a railML file. Table 2
shows that this time increases with the area size, as was expected,
but is still below 100ms even for the most complex area. Second, we
have the time needed to actually evaluate the rules. This time also
increases with the complexity of the area, as expected. All rules are
verified well below 1s, and in many cases almost instantaneously,
except for rule #9 in area E that took a few seconds to be checked.
For the sample catalog, the total time to verify all rules in the
sample areas (including the railML processing time) ranges between
11ms and 6.5s. Even scaling up for a more realistic catalog with
hundreds of rules, the total time would be negligible in the context
of a signalling project and, obviously, vastly more efficient than
checking the rules by hand, as is currently done.

Table 2: Rule verification time (ms)

A B C D E

railML 3 8 9 20 73

#1 0 3 4 6 183
#2 1 3 4 5 254
#3 0 0 0 0 12
#4 0 0 0 0 3
#5 0 0 0 0 8
#6 0 2 2 3 24
#7 0 0 0 1 8
#8 0 0 1 0 6
#9 0 50 15 150 5584
#10 2 1 0 9 43
#11 1 3 3 13 208
#12 0 2 1 2 22
#13 0 1 0 1 6
#14 0 2 0 8 28
#15 0 2 0 0 11
#16 1 4 6 6 20
#17 3 5 2 11 26

total 11 86 47 235 6519

6 RELATEDWORK
Formal methods and railway systems. The railway community

has long recognized the need for formal software development tech-
niques. The CENELEC EN 50128 standard [1] imposes conditions
for applying formal verification tools to safety-critical software in
the railway domain, being highly recommended to reach the high-
est safety integrity level (SIL) of SIL3 / SIL4. CENELEC EN 50128
classifies tools into three different types, from T1 to T3, depending
on whether they can introduce faults into the safety critical soft-
ware, formal tools usually being type T2 (they may fail to identify
faults but cannot introduce them themselves).

However, a relatively recent survey [8] concluded that no uni-
versally accepted formal framework has emerged, and railway com-
panies wishing to adopt formal methods still have little guidance in
the selection of the most appropriate methods and tools. Moreover,
almost all approaches focus on verifying dynamic aspects of the
railway. Some of these approaches are, however, built over railML
network models, such as the verification of interlocking rules using
model checking [9], or capacity analysis using SAT solving [13].

Railway infrastructure verification. As far as we are aware, the
only work focusing on the verification of infrastructure rules over
network models is the CAD-centric approach proposed by Luteber-
get and Johansen [14], eventually integrated and commercialized
in the RailCOMPLETE® tool [20]. Here both the technical draw-
ing and the signalling design is performed in AutoCAD, supported
by a plugin. This is fundamentally different from our decoupled
approach, where the technical and signalling designers can work
independently with the tools they are accustomed to, synchronizing
sporadically when verification is required. Likewise our approach,
they use railML models as the interchangeable format (although at
the time of release, railML 2 did not include interlocking informa-
tion, which required a non-standard extension [5]). The verification
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engine is based on the logic programming language Datalog, which
supports a fragment of first-order logic. railML models are trans-
lated into Datalog facts, and infrastructure rules are expected to
be programmed by users directly as Datalog rules. The authors
also exploit the fact that design is incremental to more efficiently
perform analysis. Our evaluation in Section 5.2 has shown that
performance is not an issue with EVEREST.

Later work by the same team led to a controlled natural language
(CNL) to specify infrastructure rules [12] The goal is to allow do-
main experts to encode rules in a more user-friendly language than
Datalog. Although this language is quite rigid and much less expres-
sive than the underlying Datalog, it still supports the encoding of
many rules required by the Norwegian regulator. Our approach sits
in a sweet spot between [14] and [12]: the EVEREST rule language
is higher-level and more readable than programmatic rules due to
its use of modal logic, but more expressive than a CNL. To simplify
the specification of rules with similar patterns, EVEREST allows
instead the definition of rule templates with placeholders.

Since in RailCOMPLETE both the technical drawing and the
signalling design is performed in AutoCAD, the latter can become
quite difficult to understand due to the overwhelming detail needed
in the former. In a recent work [15], a SAT-based synthesis pro-
cedure was developed to automatically generate a more abstract
schematic diagram easier to understand by signalling engineers.

The railML organization supports a validator and visualizer for
railML models, railVIVID5, but it essentially supports schema vali-
dation and has no support for verifying any kind of rules.

Railway network modelling. There is a chronic difficulty in con-
necting different railway IT applications. Efforts towards standard-
ization started around 2002, resulting in the first version of railML.
In 2013 the UIC (International Union of Railways) launched a group
to standardize several data formats for infrastructural models in
use at that point by the EU. The outcome was the RailTopoModel®
(RTM) standard (IRS 30100), which proposes a multi-level topo-
logical model supporting multiple referencing systems. RTM was
developed in collaboration with the railML organization, which re-
sulted in the release of the RTM-compliant railML 3 in 2017, with a
complete re-organization of the infrastructure layer. Other formats,
such as ARIANE, also evolved to support RTM.

There are a few other data formats for topological models besides
RTM (e.g., the IDMVU standard6 for infrastructure data manage-
ment, the OpenStreetMap (OSM) file formats7 used in the Open-
RailwayMap initiative, or part of the UNISIG Subset-112 exchange
format for specifying test scenarios. There is also some work on
using general-purpose modelling languages in the railway domain,
e.g. UML [4]. Nonetheless, EVEREST uses railML mainly because it
is becoming the de facto standard in industry and is supported by
most railway software8, despite some current limitations that ren-
der the specifications of some rules rather indirect (see discussion
in Section 5.1) or even impossible (due to lack of information).

Formal logics. Our rule language was inspired by metric interval
linear temporal logic [3] and Alloy [10]. Concerning the former we

5https://www.railml.org/en/user/railvivid.html, last visited May 12, 2022.
6http://www.idmvu.org, last visited May 12, 2022.
7https://wiki.openstreetmap.org/wiki/OSM_file_formats, last visited May 12, 2022.
8https://www.railml.org/en/introduction/software.html, last visited May 12, 2022.

just adapted the temporal modal operators to deal with distances
along tracks and routes. By contrast with, e.g. [11], we do not
require a fully-fledged spacial logic [2] because of the linear nature
of railway tracks and the fact that we are only interested in spatial
restrictions along those. Alloy is popular for the specification of
structural restrictions and in its latest version 6 supports (non-
metric) temporal modal operators [16] (which has been used to
verify dynamic aspects of the Hybrid ERTMS/ETCS Level 3 railway
standard [6]). Several other languages and logics can be used to
specify structural restrictions, for example UML’s Object Constraint
Language (OCL) [18], but Alloy has a much simpler syntax and
semantics thanks to its "everything is a relation" motto.

7 CONCLUSIONS AND FUTUREWORK
We have presented EVEREST, a toolset for automating the verifi-
cation of railway network models. EVEREST is expected to have a
deep impact at EFACEC due to the following key benefits: 1) support
for using formal verification techniques at design phase which will
increase the correctness of the produced design, and consequently,
reduce the number of errors that pass to the next stages; 2) support
for the development of a consistent view of the network between
signalling engineers and technical designers, automating the flow
of information between both views of the system, thus increasing
productivity among the teams; 3) support for the definition of rele-
vant properties to be verified, and automation of their verification,
which will reduce the required effort for verification activities.

While one main goal behind the development of EVEREST was
to allow the different teams to keep using the design tools that bet-
ter suit their concerns, the adoption of the toolset will still impact
current practices. On the one hand, technical designers will use the
AutoCAD plugin to support the positioning of net elements. On the
other hand, rules will have to be specified and the results of verifi-
cation inspected. This opens a immediate needs to further evaluate,
through empirical studies, the acceptability of the AutoCAD plugin
and of the Network Visualizer representations by technical staff at
EFACEC, and the expressiveness of the DSL.

On the medium to long term, we envisage a number of possibili-
ties. This paper focuses on the verification of railway infrastructure
rules, but those regarding interlocking must also be verified prior to
deployment. These rules are dynamic, and analysis must consider
the evolution of the system. We are studying ways to integrate this
analysis in the EVEREST workflow. Moreover, the tool currently
focuses on the identification of violations. A logical next step is
to look at support for automatically fixing those violations. One
possibility is to follow the ideas in [15], and explore how synthesis
could be used to propose fixes for the violations found.
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