
Experiences on Teaching Alloy with an Automated
Assessment Platform?

Nuno Macedob,a,∗, Alcino Cunhac,a, José Pereirac, Renato Carvalhoc,a,
Ricardo Silvac, Ana C. R. Paivab,a, Miguel Sozinho Ramalhob,a, Daniel Silvab

aINESC TEC, Porto, Portugal
bFaculty of Engineering of the University of Porto, Porto, Portugal

cUniversity of Minho, Braga, Portugal

Abstract

This paper presents Alloy4Fun, a web application that enables online editing

and sharing of Alloy models and instances (including dynamic ones developed

with the Electrum extension), to be used mainly in an educational context. By

introducing secret paragraphs and commands in the models, Alloy4Fun allows

the distribution and automated assessment of simple specification challenges,

a mechanism that enables students to learn the language at their own pace.

Alloy4Fun stores all versions of shared and analyzed models, as well as derivation

trees that depict how they evolved over time: this wealth of information can

be mined by researchers or tutors to identify, for example, learning breakdowns

in the class or typical mistakes made by Alloy users. A data analysis library

is also provided to support this process. Alloy4Fun has been used in formal

methods graduate courses for 3 years and for the latest editions we present

results regarding its adoption by the students, as well as preliminary insights

regarding the most common bottlenecks when learning Alloy (and Electrum).

Keywords: Teaching formal methods, Alloy, Automated assessment

?This work is financed by the ERDF – European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

∗Corresponding author
Email address: nuno.m.macedo@inesctec.pt (Nuno Macedo)

Preprint submitted to Journal of LATEX Templates June 17, 2021

1. Introduction

Alloy [1] is a popular formal specification language, accompanied by a toolkit,

to describe and reason about software design. It is taught in several undergradu-

ate and graduate courses in formal methods, including graduate courses taught

by some of the authors of this work at University of Minho (UM) and Uni-5

versity of Porto (UP), in Portugal. One of the reasons for this popularity is

the support for automated analysis provided by the Alloy Analyzer, an easy to

download and install self-contained executable written in Java. The Analyzer

also allows instances (either witness scenarios or property counter-examples) to

be graphically depicted using user-customized themes, a popular feature both10

for experienced users and students. Alloy is very effective in the specification

and analysis of the static structures that pervade software design, but requires

the employment of well-established idioms, that introduce an explicit notion of

state or time, if mutability is to be considered and temporal properties analyzed.

To avoid this cumbersome and error-prone process, several extensions to Alloy15

have been proposed, including one by authors of this paper – Electrum [2] –

which extends the Alloy language with variable structures and linear temporal

logic (including past operators), also adding bounded and unbounded model

checking engines to the Analyzer.

Despite such streamlined toolkit, over the many years we taught and re-20

searched with Alloy we identified some missing features and functionalities that

could further ease its adoption and its usage in an educational context. The

first is the lack of a straightforward mechanism to share simple Alloy mod-

els, instances1 and associated themes, a process that becomes cumbersome in

large classes with close interaction with the tutors. This would be particularly25

useful for students trying to get feedback from the tutors about specific counter-

examples, or to submit exercise resolutions for evaluation. The second is the

1In Alloy literature, specifications are usually referred to as models, and the results of

animation/verification commands as model instances.

2

absence of some automated assessment functionality or online judge system for

students to independently check the correctness of their exercise resolutions.

Due to some limitations of the visualizer packaged with the Analyzer, we also30

felt the need for a more decoupled infrastructure to test alternative instance

visualization features.

To address these limitations we developed Alloy4Fun, a web application

that enables online editing and sharing of Alloy and Electrum models2 and

instances, with additional support for simple specification challenges in the form35

of duels where students attempt to discover a secret specified by the tutors.

The deployment of such an online platform also provided us the opportunity to

collect information regarding Alloy usage patterns from an extended user base:

one of the features of Alloy4Fun is thus the recording of every interaction with

the (anonymous) user, information that is made available to the creator of the40

challenges for subsequent analysis. A data analysis library, with support for

user-defined metric queries, is also provided to ease such analyses. Over the

last three years, Alloy4Fun has been used in 5 editions of graduate courses on

formal methods, which has allowed us to quickly obtain insight on how students

use the language, namely identify typical mistakes or learning breakdowns in45

the class.

This paper presents Alloy4Fun and reports on its application in teaching

Alloy. It starts with an overview of (and rationale for) the current features of

Alloy4Fun in Section 2. Section 3 details how Alloy and Electrum were used

in the formal design of Alloy4Fun, namely presenting a formalization of the50

internal data model of Alloy4Fun, essential to understand and develop mining

procedures for the data available to challenge creators. The Alloy language is

also presented in the process. Section 4 presents how challenges can be created

using Alloy4Fun (Section 4.1), as well as the data analysis library that can

2Electrum is retro-compatible with Alloy: models without temporal features are valid Alloy,

apart from protected keywords. For readability we will simply refer to Alloy throughout the

paper, unless some Electrum-specific feature is being discussed.

3

be used by challenge creators to gather insights about submitted resolutions55

(Section 4.2). Section 5 reports on the deployment of the platform in a formal

methods graduate course (Section 5.1), results regarding usage and adoption

of the platform (Section 5.2), and how to use the data analysis library for a

more thorough analysis of specific exercises to help identify possible learning

breakdowns (Section 5.3). It also shows how the collected data can be used60

to gather more general insights on Alloy usage patterns and learning pitfalls

(Section 5.4). Finally, Section 6 concludes the paper and presents some ideas

for future work.

This paper extends a conference paper [3] by i) formalizing the design of

Alloy4Fun and more thoroughly presenting Alloy language (Section 3), so that65

the features of Alloy4Fun can be better appreciated; ii) presenting the novel li-

brary for collecting user-defined metrics (Section 4.2); iii) enhancing the lessons

learned in Sections 5.2 and 5.4 with an additional year of experience and data;

and iv) showing how the data analysis library can be used to thoroughly examine

the results of specific challenges and identify learning breakdowns (Section 5.3).70

2. Alloy4Fun overview

The core of Alloy4Fun mimics in a web application the main features of

the standalone Alloy Analyzer. After accessing alloy4fun.inesctec.pt (the

URL where Alloy4Fun is currently deployed) the user gets an empty online

editor (with syntax highlighting) where Alloy models can be written.75

As an example, the Alloy4Fun screen capture shown in Fig. 1 shows a model

of an online auctioning platform (Auction) platform, an example that was used

as an exercise in classes. A distinctive feature of Alloy is that analysis com-

mands can also be declared in a model: run commands verify the satisfiability

of the declared facts and get witness scenarios, and check commands verify the80

validity of an assertion (assuming the facts to hold) and, if that is not the case,

get counter-examples. In Alloy4Fun the topmost right button allows analysis

commands to be executed: the command to be executed can be selected in

4

alloy4fun.inesctec.pt

Figure 1: A failed attempt to solve a challenge in the Auction exercise.

the drop-down immediately above. If witnesses or counter-examples are found,

they are depicted below the editor as graphs that, likewise in Analyzer, can be85

customised with user-defined themes.

Besides these core functionalities, Alloy4Fun has some new features (and

some improvements to existing ones) when compared to the Analyzer, as de-

scribed in the sequel. Currently, it also has some limitations, most notably the

inability to choose the underlying solver used to perform a given analysis, not90

being able to display an unsatisfiable core, and the lack of support for Alloy’s

module system (except for the standard modules distributed with Alloy, which

can be imported). In the specific case of Electrum, Alloy4Fun lacks the more

sophisticated trace exploration options available in the Electrum Analyzer [4].

Instance visualization and navigation. When compared to the Analyzer, Al-95

loy4Fun follows a more lightweight approach to the user interface, allowing the

5

most common theme customizations (like changing the color of the atoms of a

given signature) to be performed quickly through a right-click menu on atoms or

edges. We also stripped down a bit theme features to a subset that we identified

as those more commonly used. Alloy4Fun themes allow color, shape, stroke, and100

visibility parametrization for signatures and fields, signature projection, and the

display of fields as attributes inside atoms. Among the unsupported features we

have, for example, the customization of the atom labels for each signature or

the ability to hide only unconnected atoms of a particular signature. A new fea-

ture is the ability to select different layout algorithms to automatically organize105

nodes, which the user can then manually move. Unlike in the Analyzer, atom

positions are preserved between the frames of projected instances, and when

navigating the different states of a trace in the case of an Electrum (mutable)

instance. In Fig. 1 a counter-example of a check command named inv1ok,

described in Section 4.1, is being depicted with a user-defined theme. Unlike in110

the Analyzer, besides navigating to the next instance the user can also re-visit

previously presented instances. In the case of Electrum, Alloy4Fun only allows

one state of an instance trace to be visualised at a time (the Electrum Analyzer

depicts two states side by side), and it is only possible to ask for a different

next trace (the Electrum Analyzer has more sophisticated trace exploration op-115

tions, for example it is possible to ask for trace with the same prefix up to the

displayed state, but a different next state).

Sharing models and instances. The standard Alloy Analyzer provides limited

support for model and instance sharing: they can be saved in separate files,

which can then be shared using external tools (email, online repositories, etc),120

to be again opened at the destination for inspection or editing. When a visu-

alization theme has been developed to ease the interpretation of instances, it

must also be shared in an additional file. This sharing by saving / opening files

rapidly becomes tedious and time consuming in some contexts, in particular for

tutors of large classes that interact frequently with students (typically by email)125

to clarify doubts. Alloy4Fun provides the ability to easily share models and in-

6

stances. After pressing the “share model” button a permalink is generated, that

can later be used to access the model. Any theme defined by the user is also

preserved when sharing, thus allowing instances of shared models to be depicted

as intended by their creators. Concrete instances can also be shared via perma-130

links. The theme and positions of the depicted atoms and relations at the time

of sharing are also preserved. This is a very handy feature since, likewise in the

Analyzer, the positioning of atoms by the automatic layout mechanism is of-

ten not ideal, requiring manually rearrangement for better comprehension. For

instance, the instance presented in Fig. 1 can be shared exactly as depicted3.135

Anonymous interaction. In Alloy4Fun there are no user accounts nor means to

recover the permalinks of previously shared models and instances. The user is

responsible for keeping track of relevant permalinks using some external mech-

anism (Alloy4Fun provides a “copy to clipboard” button to ease this task). The

anonymity, namely the absence of user accounts, was a design choice made in140

order to keep the interaction with the web application as simple as possible,

to maximize user exposure, and also to avoid dealing with privacy and secu-

rity issues, namely the hassle of storing and managing user credentials and of

implementing mandatory regulations concerning data protection.

Automatic assessment. Although the Alloy specification language has very neat145

and simple syntax and semantics, many students struggle with its declarative

nature, in particular those used to procedural programming [5]. One way to

overcome this difficulty is by independently solving exercises proposed by tu-

tors, but, even with automated analysis and visual feedback, it is often difficult

for students to assess whether they reached the correct answer, and tutors are150

required to inspect and interpret the solutions (something not scalable for large

classes). These problems could be mitigated with automatic assessment func-

tionalities, allowing students to solve exercises at their own pace and without

the constant need for face-to-face time with tutors. In recent years, auto-graders

3http://alloy4fun.inesctec.pt/KhyrJNyr97soxNrXJ

7

http://alloy4fun.inesctec.pt/KhyrJNyr97soxNrXJ

and online judges have become widely popular for learning how to program [6],155

and we believe this success could be replicated in the learning of formal methods

in general, and Alloy in particular.

With this in mind, the user in Alloy4Fun has the ability to mark any para-

graph of a model as secret, by adding the special comment //SECRET imme-

diately before. When sharing a model with secret paragraphs two permalinks160

are generated: a private one that, when accessed, reveals the full model, in-

cluding secrets; and a public one that, when accessed, strips the original model

of secrets and only shows public paragraphs (although secret commands can

still be executed, their names being public). Whenever a user calls an analysis

command, the server searches the original model for secrets and merges them165

with the submitted model. Using a comment instead of a new keyword to mark

secret paragraphs ensures compatibility with Alloy’s default syntax, allowing

users to copy and paste models from Alloy4Fun to the standalone Analyzer,

and vice versa. Section 5.1 will describe how this feature can be used to cre-

ate simple specification exercises in the form of duels, where the user / student170

tries to reach a secret specification. The instance shown in Fig. 1 was obtained

precisely by accessing the public permalink of an exercise, and failing to solve a

challenge, for which a counter-example was returned.

Mining derivation trees. A possible way to gain insight about the students’

learning process is to have access to their attempts at solving the proposed ex-175

ercises, and tool support to mine this corpus for useful data [7]. Again, such

feature would also be useful for research, and was one of the reasons that led Mi-

crosoft to develop the www.rise4fun.com web service, that allows researchers

to easily deploy their tools on the web and collect human-tool interactions for

posterior mining [8] (besides other advantages of web tools, like increased expo-180

sure, since the need for downloading and installing is eliminated, and promot-

ing reliability given the large amount of test cases that can be collected). One

of the most popular examples available via Rise4Fun, and the inspiration for

developing Alloy4Fun, is www.pex4fun.com, a web-based educational gaming

8

www.rise4fun.com
www.pex4fun.com

environment for learning programming, where students can engage in coding185

duels where they attempt to write code equivalent to a tutor’s secret implemen-

tation [9]. Pex [10], an advanced white box test-generation tool, is used on the

background to find inputs that show discrepancies between the student’s code

and the secret implementation. However, Rise4Fun has some limitations in the

interaction with the output of the tools, which would prevent the implementa-190

tion of key Alloy features such as instance iteration and customization. This

has led us to implement our own solution rather than integrate Alloy in this

service.

Every shared model and instance is stored by Alloy4Fun in its database.

However, to enable the proponents of challenges to mine the submissions for use-195

ful information, every model for which a command was executed is also stored,

along with the respective result (e.g., whether satisfiable or not, or whether er-

rors were thrown). Moreover, for each model, the identifier of the model from

which it derives and a time-stamp are also stored. This means that all the

models that are developed after accessing a shared permalink end up forming a200

derivation tree. In the case of a permalink with secrets / challenges, a branch in

this tree typically corresponds to an interactive session where one user / student

is trying to solve the different challenges defined inside, and can be analyzed to

determine, for example, how many challenges were solved or how many attempts

were needed to solve each one. Every fork in a branch represents a point where205

a user generated a new permalink for a model which was subsequently accessed

multiple times. The formalization of the Alloy4Fun data model in Section 3

provides further insights on this structure. Alloy4Fun allows anyone in posses-

sion of the secret permalink of a model to download the respective derivation

tree in an easy to process JSON format. A data analysis library has also been210

developed to support the extraction of metrics from the derivation tree of a

challenge given user-defined metrics, which is described in Section 4.2.

Implementation. Alloy4Fun was developed [11] with Meteor, a full-stack isomor-

phic JavaScript framework for developing web applications based on Node.js.

9

The client uses CodeMirror as text editor and the Cytoscape.js graph visualiza-215

tion library to depict instances. Models and instances are stored in a MongoDB

document-oriented database at the server. To execute commands, we encap-

sulated the Alloy Analyzer in a RESTful web service implemented in Java.

Seamless deployment of both the application and the service in a server is per-

formed using Docker. All the Alloy4Fun code is open-source and available at220

github.com/haslab/Alloy4Fun.

3. Formalizing Alloy4Fun with Alloy

Alloy itself (and Electrum) were used during the design phase of Alloy4Fun,

to formalize and explore different design alternatives, and check that the op-

erations made available via the web interface satisfy some of the expected in-225

variants4. In this section we present this specification, including the Alloy4Fun

internal data model, namely the derivation trees, thus providing a better in-

sight on the data structures that can be mined by the users using the library

presented in Section 4.2. A secondary goal of this presentation is to provide a

more thorough overview of the Alloy language, and the Electrum extension, so230

that the results from Section 5 can be better appreciated.

An Alloy model consists of a sequence of paragraphs: each paragraph is ei-

ther a signature (and the respective fields) declaration, a fact with a constraint

that is assumed to hold, an assertion with a constraint to be checked, or an

auxiliary predicate or function definition. Signatures introduce sets of elements235

(known in Alloy as atoms) and fields establish relations of arbitrary arity be-

tween those sets. Disjoint subset signatures can be declared by extension, and

the parent signature can be marked as abstract, if it should only contain atoms

present in its extensions. Signature and field declarations can have multiplicities

attached to impose cardinality constraints.240

4The design of Alloy4Fun actually followed a feature-oriented design approach, using an

Alloy extension to model and analyze multiple variants [12]. In this section we present only

the specification of the variant with the features that ended up being implemented.

10

http://github.com/haslab/Alloy4Fun

1 sig Timestamp, Id, Object {}
2

3 sig Paragraph {}
4 sig Command extends Paragraph {}
5 sig Secret in Paragraph {}
6

7 abstract sig Entry {
8 id : one Id }
9

10 abstract sig Model extends Entry {
11 time : one Timestamp,
12 spec : set Paragraph,
13 parent : lone Id,
14 root : one Id }
15

16 sig Share extends Model {
17 theme : one Object }
18

19 abstract sig Result {}
20 one sig Sat, Unsat, Error extends Result {}
21

22 sig Execution extends Model {
23 command : one Command,
24 result : one Result }
25 sig HasWarnings in Execution {}
26

27 sig Instance extends Entry {
28 model : one Id,
29 graph : one Object }
30

31 abstract sig Link extends Entry {
32 model : one Id }
33 sig Private, Public extends Link {}
34

35 pred inv {
36 id in Entry lone → Id // uniqueness of keys
37 all i: Model.(parent+root) | some id.i&Model // referential integrity
38 all i: Instance.model+Link.model | some id.i&Share // referential integrity
39 no iden&^(parent.~id) // no circular derivations
40 root.~id in *(parent.~id) // root is ancestor or self
41 all m: Model, i: ^(~id.parent).(m.root)&(m.id).*(~id.parent) |
42 some (id.i).spec&Secret implies i = m.root // no secrets after the root
43 all m: Execution | m.command in (m+m.root.~id).spec // valid command
44 all m: Share | some Link<:model.(m.id) // all shares have some link
45 all m: Instance | (m.model.~id).parent.~id.result = Sat // instances are from sat models
46 Private.model in Public.model // public links are always generated
47 all l: Private | some (l.model).~id.spec&Secret // private links have secrets
48 }

Figure 2: Alloy structural model of Alloy4Fun

In the Alloy4Fun model presented in Fig. 2, abstract signature Entry repre-

sents all elements stored in its database, which have a single identifier assigned

(field id with multiplicity one), and that are further divided as

• Model entries, that result from the Execution or Share of a model;

11

• Instance entries, that store shared model instances;245

• Link entries, storing the permalinks of shared models and instances, either

Public or Private (if secrets are defined).

Each Model has a timestamp time, the respective Alloy model spec as a

set of Paragraphs, possibly a parent model (multiplicity lone) and a root

of the derivation. Paragraphs are left uninterpreted except for Command ele-250

ments, which are relevant for the design of Alloy4Fun. Any paragraph can also

be marked as secret, identified through the sub-signature Secret. Relations

parent and root are used to store the derivation tree of a model. Models are

stored in the database both when permalinks are created for sharing or when

some command is executed. Sharemodels also store the respective theme, while255

Execution models register the executed command and the result of the execu-

tion, a value from signature Result (Sat, Unsat or Error); executions may also

have reported warnings independently of the result, identified by sub-signature

HasWarnings. Instance entries point to the identifier of the respective model

and the graph representation of the instance so that the positioning of elements260

is preserved. Both theme and graph point to uninterpreted Object atoms

whose content is not relevant for this analysis. Lastly, Link elements point to

the identifier of the model they refer to.

Once the general structure of a model is declared, additional constraints can

be defined in Relational Logic (RL), an extension of First-Order Logic (FOL)265

with operators that can be used to combine relations (aka predicates in FOL).

Relational expressions combine the declared relations (and some constants like

the universe of all atoms univ, or the binary identity relation iden) using typi-

cal set-theoretical (such as union +, intersection & or Cartesian product →) and

relational (such as the converse ~ and composition .) operations. The transitive270

^ and reflexive-transitive * closure of binary expressions can also be calculated.

These operations allow the construction of complex expressions following a sim-

ple navigational style resembling that of object-oriented languages. Atomic

relational formulas are build either from inclusion tests with in, or simple mul-

12

tiplicity tests. These are then composed through Boolean connectives (such as275

conjunction and, disjunction or or implication implies) or FOL quantifications

(such as the universal all and existential some quantifiers).

Back to our example, a predicate inv has been declared which defines the

structural invariants of the Alloy4Fun model, namely:

Referential integrity (ll. 36–38) Each identifier is unique, as stated through280

a simple multiplicity test over id that renders it injective. Moreover, iden-

tifier references must point to appropriate entries. Note that an expression

like Model.parent retrieves all identifiers related to any Model through

parent, and that for an identifier i, id.i retrieves the associated entries

(in Alloy everything is a relation, including quantified variables which are285

singleton sets). Thus, a multiplicity test some id.i forces i to refer to

some Entry, while some id.i&Model forces it to refer to some Model

entry specifically.

Derivation tree (ll. 39–42) The parenthood relation must form a tree. Since

field parent has type Model → Id and field id has type Entry → Id,290

expression parent.~id has type Model → Entry and denotes the par-

enthood relation at the level of entries. Thus, for a particular model m,

m.^(parent.~id) retrieves all ancestor entries of m using the transitive

closure, and no iden&^(parent.~id) guarantees that the parent rela-

tion is not circular. The root of a derivation is the ancestor model from295

which the secrets are inherited are merged during analysis, and can be

used to determine which entries are attempts to solve a shared challenge

(which, as will be described in Section 4.1, use secret commands for check-

ing the correctness). The root must be one of the ancestors, and, since

models accessed through public links are stored without the root secrets,300

between the root and the current model no other entry may contain secrets

(otherwise it would be the root of a new derivation tree). A consequence

of this is that, if a user following a public link to a challenge introduces

secrets of its own in the model (for example, to create a new challenge),

13

Figure 3: An instance of the Alloy4Fun structural model in Alloy4Fun.

the connection to the original challenge is removed, and the new entry is305

no longer part of the respective derivation tree. However, this does not

force the root to be the closest ancestor with secrets: in particular, if the

secrets of a model are deleted, the new derived model will become the root

of its own derivation tree, since the previously existing secrets must not

be inherited.310

Execution data (l. 42) The command assigned to an execution entry must

be among the commands defined in the respective Alloy specification or

inherited from the root model.

Share data (l. 44) All share entries must have links referring to them.

Instance data (l. 45) Instance entries must refer to satisfiable executions.315

Link data (ll. 46–47) If there is a private link to a model, there must also

exist a public one (but not the other way around, in case there are no

secrets). Moreover, private links must refer to models with secrets.

Commands can then be defined to animate the model and inspect possible

instances. Such commands operate in a bounded domain: there is a user-320

defined scope imposed on every signature that limits the maximum number of

elements that will be considered by the automatic verification procedures (which

by default is 3 for all elements). For instance, a command run { inv } will

generate instances that are consistent according to inv with at most 3 atoms

14

per signature, but more interesting scenarios can be generated with additional325

restrictions, such as

run { inv and some Execution and some Instance } for 2 but 7 Entry, 7 Id

forcing some entries to exist, but to a maximum of 7. Figure 3 depicts one

such possible instance in Alloy4Fun5 with 3 model entries: a share with a secret

command, an execution of that shared model with a satisfiable result, and an330

instance share of that result. A useful feature of Alloy is that auxiliary functions

can be defined and depicted in instances to ease visualization, even without

being considered during analysis. For instance, functions were defined to depict

the derivation tree at directly the entry level, such as the following for the

parenthood relation335

fun parentM : Model → Model {

parent.~id }

In Alloy every signature and field is immutable, which allows for the valida-

tion of structural properties. With the Electrum extension they can be declared

as mutable, and formulas can also be specified with Linear Temporal Logic (LTL)340

operators (such as future always and eventually or past historically and

once), which allow for the specification and verification of dynamic models. A

typical analysis on such models is to check that the specified system operations

preserve some desired invariants of the data. Given the complexity of Alloy4Fun

operations and data model, we opted to conduct such an analysis at the design345

phase. A typical way to do such analysis with Electrum is to i) define the muta-

ble elements and adapt the desired invariant accordingly; ii) specify the system

operations using predicates that constrain the relation between the respective

pre- and post-states; and iii) check whether traces built from the application of

operations always preserve the invariant.350

Figure 4 depicts an excerpt of the behavioural model of Alloy4Fun for an

interactive user session. Here, singleton signature A4F represents the web ap-

5http://alloy4fun.inesctec.pt/Z76PLPdYPBRxtS8er

15

http://alloy4fun.inesctec.pt/Z76PLPdYPBRxtS8er

1 one sig A4F {
2 var db : set Entry,
3 var time : one Timestamp,
4 var editor : set Paragraph,
5 var current : one Id,
6 followed : lone Id } {
7 some current.~id&db&Model
8 some followed implies some followed.~id&db&Link }
9

10 pred execute {
11 some i: Id, m: Execution {
12 m not in A4F.db
13 m.id = i
14 m.time = A4F.time
15 m.spec = A4F.editor
16 m.parent = A4F.current
17 m.root = ((some A4F.editor&Secret or A4F.followed.~id in Private)
18 implies i else A4F.current.~id.root)
19

20 A4F.db’ = A4F.db + m
21 A4F.current’ = i
22

23 A4F.time’ = A4F.time
24 A4F.editor’ = A4F.editor } }
25

26 pred shareModel { . . . }
27

28 pred shareInstance { . . . }
29

30 pred user {
31 current’ = current
32 db’ = db }
33

34 pred init {
35 inv // consistent database
36 A4F.followed.~id.(Link<:model) = A4F.current // id of the followed link
37 A4F.editor = (A4F.followed.~id in Private implies // show secrets if private link
38 A4F.followed.~id.spec else A4F.followed.~id.spec - Secret)
39 }
40

41 fact trace {
42 init
43 always (user or execute or shareModel or shareInstance) }
44

45 check { always inv } for 3 but 5 Entry, 5 Id

Figure 4: Fragment of the Alloy dynamic model of Alloy4Fun

plication whose state is determinable by some mutable fields (marked as var).

The most relevant field here is db, the set of Entry elements in the database at

each moment. The current state of the editor, the identifier of the current355

entry and the current time are also stored as mutable fields. The link followed

to start the session, if any, is also stored as a static field since it will not change

16

during the session. The introduction of a mutable database requires adapting

inv from Fig. 2 to this context: for instance, to preserve relational integrity at

each state relations must point to Entry elements that exist in db in that state,360

which could be specified as:

all i: A4F.db&Model.(parent+root) | some id.i&A4F.db&Model

Next, four operations that make the system evolve were encoded: the exe-

cution of models, the sharing of models and instances, and the user interacting

with the editor and visualizer. The first one is presented in Fig. 4 (ll. 10–24).365

Recall that primed expressions, such as db’, refer to the state of the expression

in the succeeding state. Essentially, a new execution m is added to db with

the appropriate data. The root, in particular, is reset if the current code has

secrets or the session is editing a private link. Other than db and the current

identifier, the state of the system does not evolve. That evolution is encoded370

by predicate user (ll. 30–32) which represents user interactions with the editor,

which does not update the database.

Lastly, we want to check whether such operations effectively guarantee the

preservation of the invariant. One way to do this is to force the system to

start from a consistent state (determined by predicate init here) and evolve375

according to the declared operations, as in fact trace (ll. 41–43). A check

command can then check whether the invariant is globally true at all traces

(within a certain scope), which is true for the presented model. The modelling of

the operations in a way that preserves the invariants actually drew our attention

to some subtle corner cases prior to implementation (particularly, when should380

derivation trees be broken as secrets are added/removed).

4. Writing and mining challenges

As already stated, one of the main goals of Alloy4Fun is to be used in the

educational domain, both by allowing the definition of challenges with auto-

grading and the extraction of information regarding the students progress. This385

section describes how these two tasks can be performed by an Alloy instructor.

17

4.1. How to create challenges

The model secrets supported by Alloy4Fun can be used to create simple

specification challenges in the form of duels, where the user (typically a student)

tries to reach a secret specification. Such models – which we refer to as exercises390

– can have a public predicate that the student must fill-in, together with a

secret check command that asserts (for a given scope) that such predicate is

equivalent to the desired specification (typically in a separate secret predicate).

Note however, that although such exercises are useful for practicing the usage of

logic (either relational or temporal) in the specification of properties, there are395

certain classes of problems for which the approach based on secret specifications

is not well-suited, namely modeling exercises where the student is expected to

declare signatures and fields.

The model shown in Fig. 1 was obtained precisely by accessing the public

permalink of the Auction exercise, which contains 3 challenges (in this case,400

simple problems where a natural language description of a desired property of

the model is given for each of them). After filling the empty predicate (e.g.,

inv1, whose desired property is that an article can be auctioned by at most one

person), the student can check whether it is a valid solution (e.g., by running

secret command inv1ok, for the case of inv1), which will either return a “no405

counter-example found” message, meaning the challenge is solved, or a counter-

example otherwise (as is the case in Fig. 1, showing that the specification of inv1

is still incorrect, since the student attempt will fail when p1=p2). Figure 5 shows

the secret implementation of challenge inv1: predicate inv1oracle specifies a

correct solution for the challenge and command inv1ok checks the equivalence410

between both.

In more complex examples assertions may need to be further restricted, as in

the CV exercise, which models an online Curriculum Vitae platform, for which

the secret of inv2 is presented in Fig. 6. Here several desired (and natural)

properties of the model are solved in different challenges, but if they were solved415

independently the student would get many counter-examples where it would not

be clear why their specification failed, since they would be "polluted" with dis-

18

1 pred inv1 {
2 // An article cannot be auctioned by two different people
3

4 }
5 //SECRET
6 pred inv1oracle {
7 all a : Article | lone auctions.a }
8 //SECRET
9 check inv1ok {

10 inv1oracle iff inv1 }

Figure 5: The secret for the challenge inv1 of Auction from Fig. 1.

1 //SECRET
2 abstract one sig RejectedBy {}
3 //SECRET
4 sig ShouldBeRejected, ShouldBeAccepted extends RejectedBy {}
5 . . .

6 pred inv2 { // A user profile can only have works added by himself or some external institution
7

8 }
9 //SECRET

10 pred inv2oracle { all u : User | u.profile.source in Institution+u }
11 //SECRET
12 check inv2ok {
13 ((some ShouldBeRejected iff (inv2 and not inv2oracle)) and
14 inv1oracle and inv3oracle and inv4oracle) implies
15 (inv2 iff inv2oracle) }

Figure 6: The secret for the challenge inv2 of CV.

tracting problems corresponding to failures of other properties. Thus, we opted

to check inv2 assuming that the remaining properties hold. This conditional

check is the reason to include inv1oracle, inv3orable, and inv4oracle as as-420

sumptions in the equivalence check inv2ok. Notice that in the preamble to this

particular exercise the students are warned that they can assume the properties

in the remaining challenges to be true when solving a particular challenge.

During the first editions of the courses where Alloy4Fun was used we also

noticed that the students found it hard to distinguish whether the provided425

counter-example represents a scenario where their solution was over-specified or

under-specified. For this reason, more complex challenges include two special

atoms in the counter-example instance that signal whether an instance should

have been rejected or accepted by a correct specification, meaning their so-

19

lution is under- or over-specified, respectively. As seen in Fig. 6 this can be430

achieved by introducing a singleton signature whose possible values are either

ShouldBeRejected or ShouldBeAccepted and through a simple trick in the

equivalence check, namely making the verification conditional to the existence

of the ShouldBeRejected atom when the student solution incorrectly holds (or

vice-versa).435

4.2. How to mine challenge statistics

The “owner” of an exercise can download the respective derivation tree

through the Alloy4Fun interface as a JSON file. However, since analyzing such

data can be cumbersome, we developed a very simple data analysis library to

ease this process and that was used to mine the data presented in this paper.440

The library supports user-defined metric queries and it is written in Java, since

it is the language in which the Alloy Analyzer is written and we want to exploit

its parser and AST in order to collect metrics about the submitted models. It

generates outputs both in a simple textual form and as a very basic HTML

with data charts. As an example, the output for Auction is publicly available6.445

All data presented in the following sections – except for that regarding the

conceptual classification of exercises from Section 5.4, which requires manual

assignment – has been calculated using this library. A catalog of basic metrics

is also provided in the repository.

To ease the discovery and automatic execution of metric methods, we rely on450

Java annotations and reflection. Each metric method that is to be run should

be annotated with @MetricMethod and provided with the group by operation (the

typical count, sum, max, min, or average) and optionally some meta-data, such

as the rule name and a longer description). The method’s parameters must

be annotated with which artifacts of the derivation tree of the exercise it is455

expecting to receive. The supported parameters are summarized in Table 1.

Most of them correspond directly to the data model presented in Section 3. For

6https://haslab.github.io/Alloy4Fun/SGfC5MjAijZfMQZPs.html

20

https://haslab.github.io/Alloy4Fun/SGfC5MjAijZfMQZPs.html

annotation type inputs

@ForAllSessions Model all derivation branches of the root

@ForAllModels Model all model entries

@ForAllExecutions Execution all execution entries

@ForAllShares Share all share entries

@ForAllLinks Link all link entries

@ForAllInstances Instance all instance entries

@ForAllSolutions Solution all solutions of sat execution entries

@ForAllErrors Err all thrown error messages of model entries

@ForAllWarnings ErrorWarning all thrown warning messages of model entries

@ForAllChallenges String all challenges of the root

Table 1: Annotations for metric parameters

instance, a metric method with a parameter annotated with @ForAllExecutions

will be called for all execution entries of the derivation tree of the exercise un-

der analysis. For more detailed analysis, the re-execution of all entries can be460

requested to the library. In this case the byproducts of these procedures – the

AST of the Alloy code of model entries, the full Alloy solution instances of sat-

isfiable executions, and thrown error and warning messages – can also also be

analyzed independently by metric methods. They also become accessible from

the respective model entries. Lastly, the @ForAllChallenges allows iterating over465

the commands defined in the root model, useful to organize the reports accord-

ing to the attempted challenge. Metric methods can have multiple annotated

parameters, in which case they are called with the Cartesian product of all ar-

tifacts. Each method must return an array of results, which are subsequently

aggregated and counted by the library during analysis.470

As an example, consider the following method, which simply counts correct

executions by testing their result:

@MetricMethod(groupby = COUNT, rule = "Correct executions")

public static Object[] correctExecs(@ForAllExecutions Execution exe) {

if (!MetricRunner.isChallenge(exe.cmdName()) ||475

exe.result() != UNSAT) return null;

else return new Object[] { exe.result() };

21

MetricRunner is the main class of the metric library, and provides several helper

methods to support the analysis of challenges designed as presented in the pre-

vious section. Here, method isChallenge(String) tests whether the executed480

command was defined in the root model. The method tests if the execution was

for a root command – ignoring the execution of commands defined by users –

and if the result was unsatisfiable, which represents a correct resolution. Since

this method either returns null or UNSAT, it is interpreted as a simple counter in

the reports.485

The next example acts instead at the session level, reporting the number of

sessions in which a certain number of challenges have been solved correctly.

@MetricMethod(groupby = COUNT, rule = "Sessions by # of solved challenges")

public static Object[] sessionChallenge(@ForAllSessions Model der) {

Set<String> unsats = sessionMetrics(der).unsatCommands();490

unsats.retainAll(MetricRunner.getChallenges());

return new Object[] { unsats.size() }; }

Method sessionMetrics(Model is a helper that recursively calculates (and caches)

statistics from a derivation tree, including all unsatisfiable commands that have

been executed in children entries, retrieved by unsatCommands(). After filtering495

only for root challenges, it reports how many distinct challenges were solved in

the session. After aggregation the result is the frequency of the number of solved

challenges per session – including how many sessions solved all challenges. In

the reports, this is visualized as a bar chart.

The next example reports on the execution results for each challenge of the500

exercise.

@MetricMethod(groupby = COUNT, rule = "Execution results by challenge")

public static Object[] execsChallenge(@ForAllExecutions Execution exe) {

if (!MetricRunner.isChallenge(exe.cmdName())) return null;

else return new Object[] { exe.cmdName(), exe.result() }; }505

This metric reports a pair of values containing the attempted challenge and the

execution result. After aggregation, we get the number of satisfiable, unsatisfi-

able and errored executions for each challenge. Reports depict this as a stacked

22

bar chart.

Lastly we show a more complex metric that explores the AST of the sub-510

mitted Alloy model, a metric reporting the execution results in reference to the

number of quantified variables.

@MetricMethod(groupby = COUNT, rule = "Number of quantified variables")

public static Object[] numQuantVars(@ForAllExecutions Execution exe) {

if (!MetricRunner.isChallenge(exe.cmdName())) return null;515

AggregateVisitor<Integer> vis =

new AggregateVisitor<Integer>(Integer::sum, 0, MetricRunner.challengePreds()) {

@Override

public Integer visit(ExprQt exp) {

return exp.count() + super.visit(exp); } };520

return new Object[] { exe.cmdName(), exe.formula().accept(vis), exe.result() }; }

The method relies on an aggregation visitor AggregateVisitor that, given a

combining binary function and a default value for AST leaves, traverses the

whole AST of an Alloy model. In this case, the visit method for quantifier

expressions is overridden to count the number of quantified variables (method525

count()). If the full AST was traversed directly, however, the metric would not

reflect the student’s resolution, since the model contains the code from the root

model – such as possible facts, or the oracle predicates. The metric library

provides a helper method challengePreds() for this purpose, which retrieves the

empty predicates from the root model, which we assume are those to be filled530

by students. The aggregator then only considers data after visiting one of those

predicates. After analysis, the result is the number of correct, incorrect and

errored executions per quantifier nested level, for each challenge. Reports split

this into into several bar charts for visualization, one per challenge.

5. Experiences on teaching with Alloy4Fun535

In the first semester of the 2018/19 academic year we did a preliminary

evaluation of Alloy4Fun in two graduate formal methods courses at UM and

UP. The former taught Alloy for 6 weeks and had 22 students enrolled, and

the latter for 4 weeks and had 156 students enrolled. Both courses had one

23

weekly lecture and one weekly lab session. This experiment – which recorded540

almost 5000 interactions – allowed us to test a beta version of the application

in a medium-sized audience to detect and fix bugs and identify possible design

improvements. One major identified design improvement regarded a special

“lock” comment available in the beta version to prevent the accidental editing

of certain paragraphs that could render the challenges unsolvable (or trivially545

solvable). However, we noticed students rarely tried to change the model outside

of the challenge predicates, and opted to remove this feature for simplicity and

efficiency7. These first experiences also allowed us to identify which classes of

exercises are better suited to be deployed in Alloy4Fun, as well as how the

visualization features can be explored to provide more intuitive feedback to the550

students.

From this process resulted the first official release of Alloy4Fun, which at

the time of writing registers around 58000 entries. It has since been used in

graduate courses in the UM (2019/20 and 2020/21 academic years) and in the

UP (2020/21), on an Alloy/Electrum tutorial at the World Congress on Formal555

Methods8 (with a refined set of specification exercises with challenges), and in a

series with more advanced specification challenges, entitled GuessTheSpec, that

is being published in the official Alloy discussion forum9. The remainder of this

section mainly reports on the usage of the platform by the students during these

latest two editions of the UM graduate course. To illustrate the usefulness of the560

collected data for the Alloy community in general, it also presents preliminary

results regarding common mistakes and difficulties when learning Alloy, in this

case using all the data collected at both universities.

5.1. Alloy4Fun exercises

The challenges used in this course were based on 7 different problems:565

• Trash, a model of a file system trash bin.

7Note that Alloy4Fun is only used for self-study and not for automated student grading.
8http://haslab.github.io/TRUST/tutorial.html
9https://alloytools.discourse.group

24

http://haslab.github.io/TRUST/tutorial.html
https://alloytools.discourse.group

• Classroom, a model a classroom management system.

• Graph, a specification of several standard properties of unlabeled graphs.

• LTS, a specification of several standard properties of labeled transition

systems.570

• Production, a model of an automated production line in a factory.

• CV, a model of an online Curriculum Vitae platform.

• Train, a model of a station with moving trains (introduced only in 2020/21).

For some of these problems we developed more than one variant (or exercise)

focusing on different features of the language. Each variant was provided as a575

shared model to students and contained multiple challenges, as summarized in

Table 2. The table lists the permalink and total number of challenges of each

exercise.

Challenges in these exercises range from trivial (e.g., asking to enforce sim-

ple inclusion dependencies or multiplicities), to more complex ones requiring580

the use of nested quantifiers or closures. As expected, the introduction of the

Alloy (and Electrum) language and underlying logics in classes was gradual:

FOL constructs were first presented, followed by the full set of RL operators,

and finally the LTL operators specific to Electrum. To try to understand the

impact of using relational operators, we introduced two variants of the first two585

problems: one where challenges were to be solved using only the FOL subset

of Alloy, and another, introduced when students already had knowledge of RL,

where they could use all the standard Alloy operators to solve the challenges.

For the Trash problem we also created a mutable variant, where challenges re-

quired the usage of the LTL operators of Electrum to be solved. Hence the total590

of 10 exercises described in Table 2.

5.2. Student usage and adoption

In the 2019/20 edition 17 students attended the UM course. Alloy was

taught for 5 weeks and, for the first time in this course, Electrum was also

25

Table 2: Alloy4Fun exercises shared in the 2019/20 and 2020/21 editions of the UM course.

Id Exercise Permalink Chall.

1 Trash FOL zA2MMSGy6iW8Mihep 10

2 Classroom FOL Pdvipvrpr5hg7JKbs 15

3 Trash RL WJdLnDL78m7mM7W4J 10

4 Classroom RL i5u2pjKJt6Bz227QT 15

5 Graphs 28fwdmjL79X4SQ9EP 8

6 LTS gqS3qTTn4B62NYmJX 7

7 Production PKy7chamCieZyCix5 4

8 CV X72J6js9fA3CKYQWX 4

9 Trash LTL irRLJn7qbQq3xMFGp 20

10 Train HDSYav6cKZ6ygy5N9 18

taught for 4 additional weeks. In each week, a 1h lecture was followed by a 2h595

lab session. Alloy4Fun was used in the lab sessions that followed the lectures

that introduced FOL, RL, and LTL, mainly as a way to practice the usage of

these logics to specify natural language requirements.

In the lab sessions that addressed other aspects of the Alloy language and

analysis not amenable for automated assessment, such as solving problems that600

required the development of a full model from scratch, students were expected

to still use the Alloy Analyzer and locally manage their models. In principle,

they could also have used Alloy4Fun to develop most of the problems addressed

in those sessions, but we also wanted students to gain some experience in using

the standard Analyzer, particularly since the current limitations of Alloy4Fun605

(presented in the beginning of Section 2, such as the lack of module support or

the lack of sophisticated trace exploration options in the case of Electrum) might

prove problematic for some more realistic problems. Thus, Alloy4Fun was only

used in 4 lab sessions, each introducing a particular set of exercises – 1 session

with Trash FOL and Classroom FOL after the FOL lecture, 2 sessions with610

Trash RL, Classroom RL and Graphs after the RL lecture, and 1 session with

Trash LTL after the LTL lecture. Extra exercises (namely LTS, Production,

and CV) were made available in the course website for the students to freely

explore. Moreover, all exercises were kept available throughout the semester so

that students could independently practice outside of the classes. During the615

26

http://alloy4fun.inesctec.pt/zA2MMSGy6iW8Mihep
http://alloy4fun.inesctec.pt/Pdvipvrpr5hg7JKbs
http://alloy4fun.inesctec.pt/WJdLnDL78m7mM7W4J
http://alloy4fun.inesctec.pt/i5u2pjKJt6Bz227QT
http://alloy4fun.inesctec.pt/28fwdmjL79X4SQ9EP
http://alloy4fun.inesctec.pt/gqS3qTTn4B62NYmJX
http://alloy4fun.inesctec.pt/PKy7chamCieZyCix5
http://alloy4fun.inesctec.pt/X72J6js9fA3CKYQWX
http://alloy4fun.inesctec.pt/irRLJn7qbQq3xMFGp
http://alloy4fun.inesctec.pt/HDSYav6cKZ6ygy5N9

course there were 3 evaluation points involving Alloy: a medium-size modeling

project (developed with the standard Analyzer outside of the classes in groups

of two students), an individual written exam, and finally a supplementary exam

for students failing the first attempt.

The 2020/21 edition was attended by 25 students and followed a very similar620

plan. Likewise the 2019/20 edition, Alloy was taught for 5 weeks and Electrum

for 4 weeks, each week with a 1h lecture was followed by a 2h lab session. In

this edition, Alloy4Fun was used in 6 lab sessions – 1 session focusing on the

FOL exercises (Trash FOL and Classroom FOL), 3 sessions focusing on the RL

exercises (Trash RL, Classroom RL, Graphs, LTS, Production, and CV), and625

2 sessions focusing on the LTL exercises (Trash LTL and Train). However,

unlike in the 2019/20 edition, students were encouraged to solve the shared

exercises autonomously at home, with the lab sessions being used mainly to

clarify doubts and to conduct more regular evaluations during the semester:

the 3 main evaluation points (medium-size modeling project, individual exam,630

and supplementary exam) were complemented by 6 small evaluation challenges

during the term, the first 4 done with Alloy4Fun (3 focusing on RL and 1 on

LTL). Table 3 presents the 4 Alloy4Fun evaluation exercises10. Besides moti-

vating the students to study and practice Alloy and Electrum more regularly

during the term, these evaluation exercises also had the goal of helping the in-635

structor evaluate the progress of the students regarding the expected learning

outcomes and, in particular, identify possible learning breakdowns as early as

possible. In Section 5.3 we will detail how the data analysis library presented

in Section 4.2 can be used to help wit the latter task.

After these two editions of the course, the main question we tried to an-640

swer was whether students found Alloy4Fun useful as an automated assessment

platform while learning Alloy. More specifically: 1) have the students used

Alloy4Fun regularly outside classes? 2) in particular, have they used it when

studying for the exams? 3) have they found the sharing feature useful? 4) were

10Unlike the practice exercises, most of these evaluation exercises are written in Portuguese.

27

Table 3: Alloy4Fun evaluation exercises shared in the 2020/21 edition of the UM course.

Id Exercise Permalink Chall.

i RoomAllocation MuqgwjouPRQ4PWHw5 1

ii TrainStation 3vW9wNnPqNDC4cb4u 3

iii Auction 34dtAqKXoYoRfbN4Q 3

iv CreditCards 3N5BoPYnHf2cFrwgv 3

the counter-examples useful to reach the correct solution? To answer these645

question we used two methods: an anonymous questionnaire and analysis of

the data collected by Alloy4Fun. The questionnaire was answered by 13 of

the 17 students of the 2019/20 edition and by 17 of the 25 students of the

2020/21 edition (in total, 30 out of 42), and, over the duration of both editions

of the course, we collected almost 35000 interactions with the shared exercises650

(including evaluation exercises), most of them resulting from the execution of

commands (checking the correctness of challenges) and a small portion from

sharing of models. The dataset for both editions is freely available [13].

Concerning the first question, of the 30 students that answered the ques-

tionnaire, 25 (83.3%) said they used Alloy4Fun frequently outside classes, 4655

(13.3%) only used it rarely, and 1 (3.3%) never used it11. Concerning the sec-

ond question, all of the 29 (96.7%) students that used it outside classes answered

that they used it to study for the exam. Of these, 22 (73.3%) mentioned that

when studying for the exam they actually repeated some of the exercises they

had already solved before. The data collected throughout the semester, shown660

in Fig. 7, seems to corroborate these answers. Chart 7a summarizes the at-

tempts at solving the shared exercises over the 2019/20 semester, highlighting

the classes where usage of Alloy4Fun was mandatory and the evaluation points

(the project deadline and later in the semester the two exams). Each entry in

the dataset is either a correct (unsatisfiable) check, a wrong (satisfiable) check,665

an analysis that threw an error (e.g., parsing) or a model stored for sharing.

11Due to rounding, some percentage totals may not correspond with the sum of the separate

figures.

28

http://alloy4fun.inesctec.pt/MuqgwjouPRQ4PWHw5
http://alloy4fun.inesctec.pt/3vW9wNnPqNDC4cb4u
http://alloy4fun.inesctec.pt/34dtAqKXoYoRfbN4Q
http://alloy4fun.inesctec.pt/3N5BoPYnHf2cFrwgv

Despite the peak of usage during the Alloy4Fun classes, we can see that the

students have indeed relied on Alloy4Fun outside the classes, and in particular

when studying for the written exams. Part of the motivation for the evaluation

challenges introduced in 2020/21 was to avoid these study peaks near only the670

main evaluations. Chart 7b summarizes the attempts at solving the shared ex-

ercises for that edition, highlighting the classes where Alloy4Fun was used, the 6

mini-evaluation challenges12, the two exams late in the semester, and the project

deadline, which coincides with the first exam). It is clear that the evaluation

challenges have promoted more continuous, independent study (note that this675

data is only for the 10 shared challenges, and does not include the evaluation

challenges). Likewise to the previous edition, students also relied on Alloy4Fun

when studying for the exam.

Figures 7c and 7d present statistics per exercise (below each exercise number

we recall the number of challenges inside). Chart 7c presents the same execution680

information as Chart 7a and 7b (except shares), with the addition of the number

of successful analyses (i.e., without error) that threw warning messages. This

information is normalised taking into account the number of challenges in each

exercise (i.e., the graph shows the average number of executions per challenge).

This chart provides some evidence that most of the students attempted to solve685

all exercises, including some of those not used in class. Considering exercises

used in both editions13 and averaging the executions per challenge and per

student, we have a maximum of around 9 for exercise 6 and a minimum of around

4 for exercise 7, and an overall average of around 7 attempts per challenge per

student. Even taking into account failed attempts and repeated attempts to690

solve exercises already previously solved, it is relatively safe to infer that such

numbers can only have resulted from having most of the class attempting to

12Recall that the last two focused on using the Analyzer, thus an increase in Alloy4Fun

activity near those was not expected.
13Train was only introduced in the end of the 2020/21 semester, so it still counts fewer

interactions.

29

(a) Executions over the semester for the 2019/20 edition.

(b) Executions over the semester for the 2020/21 edition.

(c) Average challenge execution per exercise. (d) Sessions per exercise.

Figure 7: Alloy4Fun usage statistics by 17 students over a semester for 9 exercises.

solve all exercises.

Chart 7d presents information regarding solving “sessions”. Recall that a

session is a branch in the derivation tree, typically recording the interaction of695

a student with Alloy4Fun while solving the challenges inside an exercise. For

30

each exercise, we depict how many sessions solved all its challenges, some of

its challenges, or none. Of course, some students might have multiple sessions

recorded for each attempt to solve an exercise, since they might not solve all the

challenges in a single continuous session and access the original shared permalink700

several times, instead of generating a new permalink of a partial resolution for

later resuming the work. Overall, we identified 1407 sessions, with an average

of 141 sessions per exercise (excluding evaluation exercises). Even with all

the uncertainty, it is safe to say that indeed most students should have used

Alloy4Fun frequently outside the classes (from our observation, during classes705

students mainly used a single session per exercise), including repeated attempts

to solve exercises already previously solved (as reported in the questionnaire):

for example, for Trash FOL 76 sessions were recorded where all the challenges

were solved, a strong indicator that most students should have solved it at least

twice.710

Concerning permalinks, 14 (46.7%) students mentioned that they generated

them frequently to store their own solutions for later access, 8 (26.7%) did it

rarely, and, somehow surprising, 8 (26.7%) never did it. Generating permalinks

for the purpose of sharing with colleagues and tutors was even less common:

only 9 (30.0%) students did it frequently, 9 (30.0%) rarely, and 12 (40.0%)715

never. Figure 7d also depicts how many session had at least one permalink

generated, and indeed we can see that, for most of the exercises, the number

of permalinked sessions is clearly less than the number of students. In total,

models were shared 390 times (including the evaluation exercises). Surprisingly,

the share instance feature has barely been used: there were only 4 generated720

permalinks for instances for these exercises. These results seem to suggest that

one of our main goals for Alloy4Fun – to simplify the sharing of models and

instances – may actually not be that popular in an educational setting, but of

course a more comprehensive study must be conducted to clarify that.

Concerning the last question, 24 (80.0%) students mentioned that counter-725

examples were frequently useful to help find the correct answer, but of these

14 (46.7%) only found them useful if they had the atoms that signal whether

31

the shown counter-example should have been rejected or accepted by a correct

specification. Unfortunately we have no data to corroborate this, but in principle

Alloy4Fun could be used to check whether those atoms are indeed helpful or not,730

for example by giving two different versions of an exercise to different sets of

students and then analyzing the results. This is one of the studies we intend

to conduct in the near future. The questionnaire also included a free filling

suggestions question, and 2 students explicitly asked for mechanisms to suggest

more clear counter-examples.735

Finally, we also asked the students the overall question of whether they found

Alloy4Fun useful for learning Alloy and Electrum: all of them agreed that was

the case, with 24 (80.0%) strongly agreeing.

5.3. In-depth analysis of learning outcomes

To exemplify how the data analysis library introduced in Section 4.2 can be740

used to assess the progress of the students regarding the expected learning out-

comes, and in particular identify possible learning breakdowns, we will illustrate

its application in the analysis of the results of the third evaluation exercise of

the 2020/21 edition, identified as Auction in Table 3. The exercise shared with

the students was written in Portuguese, but is equivalent to the English version745

depicted in Fig. 1. This exercise focused on RL and was shared in the week

immediately after the 5 weeks that taught Alloy, which included 4 lab sessions

of practice with Alloy4Fun. At this point the students were already expected

to have a good knowledge about Alloy in general and RL in particular. The

exercise included 3 challenges:750

• The first was a very simple challenge that required students to enforce the

binary relation auctions to be injective, a property that was several times

specified in different challenges in the previous lab sessions (although with

many different formulations in natural language).

• The second required imposing a restriction on both auctions and bid, the755

latter being a ternary relation, whose manipulation our study presented

32

in the next section showed to be potentially problematic.

• The third also required imposing a kind of injectivity restriction, but now

on the ternary relation bid.

All the 25 students attempted to solve this exercise during the class it was760

shared: 17 students managed to solve all challenges, 6 solved two, and 2 solved

none. This positive result was in line with the expected at that point in the

semester, namely taking into account the number of previous lab sessions. By

applying metric execsChallenge (presented in Section 4.2) we computed the

success rate of each challenge (the ratio between correct and total number of765

attempts): the success rate for the first and third challenges was very similar

(around 27%), with the success rate for the second a bit higher (around 38%).

This result was a bit surprising, since at first glance the second property seemed

to be the most difficult, namely requiring more logic and relational operators.

To understand whether this result is due to some learning breakdown further770

analysis is needed.

Notice that the same property can be specified in many different styles with

RL. On one extreme, it is possible to use a pure FOL style, where atomic formu-

las only check if specific tuples belong to a relation (aka predicate) and formulas

typically end up using many quantifiers. On the other extreme, we can use the775

so-called point-free style, where properties are expressed without any quantifiers

or logic connectives, by resorting just to inclusion checks between (many times

complex) relational expressions defined by composition using the relational op-

erators. In Alloy, the most natural style sits somewhere between these two

extremes. A few quantifiers are used to frame the main entities that are subject780

to a restriction, from which we navigate using mainly the composition operator

in order to compute sets of related entities that are relevant to the formula.

This intermediate style is usually known as navigational [1]. For example, the

injectivity property required in the first challenge could be specified in the pure

FOL style as785

all p,q: Person, a: Article | p→a in auctions and q→a in auctions implies p=q

33

and in the pure point-free style just as

auctions.~auctions in iden

None of these is ideal: while the former is too verbose, the latter is quite difficult

to understand for non RL experts. Using the intermediate navigational style we790

could, for example, specify this constraint as

all p,q: Person | p!=q implies no (p.auctions & q.auctions)

Here we directly require that any two different people have disjoint sets of

auctions. Or even better, using just one quantification we could almost directly

transliterate the natural language requirement to logic, requiring that every795

article has at most one person that auctions it, resulting in

all a: Article | lone auctions.a

Alloy also has a special syntax to impose multiplicity constraints on the domain

or range of a relation, that can also be used to easily solve this challenge, namely

as800

auctions in Person lone → Article

These two formulations seem the easier way to solve the proposed challenge,

provided students understood that relations can be navigated backwards or

knew the special multiplicity arrow syntax. Both concepts were taught in the

classes, but maybe not well explained or practiced enough, hence the poor results805

in the first and third challenges.

It is relatively simple to mine which style was used by the students by count-

ing the number of quantified variables in the submitted solution. This can be

done with metric numQuantVars presented in Section 4.2. Among the almost

300 registered attempts to solve the first challenge, 19% used the pure point-free810

style or multiplicity check without any quantifiers, 42% used one quantification,

22% used two, 15% used three, and a residual 2% used four. The number of

attempts with the expected single quantifier was surprisingly low, an indication

that indeed many students still did not understood the usefulness of backwards

navigation in specifying this kind of properties. To check whether students used815

34

the special multiplicity syntax we can easily define the following metric using

the library presented in Section 4.2.

@MetricMethod(groupby = COUNT, rule = "Number of multiplicity checks")

public static Object[] numMultArrows(@ForAllExecutions Execution exe) {

if (!MetricRunner.isChallenge(exe.cmdName()) return null;820

AggregateVisitor<Integer> qnt =

new AggregateVisitor<Integer>(Integer::sum, 0, MetricRunner.challengePreds()) {

@Override

public Integer visit(ExprBinary exp) {

return (isMultArrow(exp.op)?1:0) + super.visit(exp); } };825

return new Object[] { exe.cmdName(), exe.formula().accept(vis), exe.result() }; }

where isMultArrow() is a method that simply tests whether the binary operator

is one of the 15 multiplicity arrows. Running this metric on the data revealed

that no student used it, which is very surprising, and a clear indicator that this

special syntax needs to be taught more extensively.830

Concerning the success rate, among those that used no quantifiers it was

around 14%, among those that used 1 quantified variable it was 41%, with 2

variables it was 6%, and with 3 variables 35% (for 4 variables the available data

is not statistically relevant). This data seems to confirm the intuition that the

formulation with one quantified variable presented above was indeed the easi-835

est way to solve the challenge, although the success rate of the students that

used a pure FOL style was still quite high. The biggest surprise is however the

extremely low success rate of the attempts with two quantified variables, some-

thing that might point out to further learning breakdowns. One potential issue

could be that, instead of checking that the sets of auctions of different persons840

are disjoint, some students are simply checking whether they are different, a

common mistake we already observed in previous challenges. Another potential

issue we previously noticed is that many students forget that when quantifying

over two variables of the same signature they can be instantiated with the same

atom, hence the need for checking that p!=q in the above version with two845

quantified variables. Given the recurrence of this pattern, Alloy syntax has the

special keyword disj that can be used in quantification to force the quantified

35

variables to be different. With this keyword the version of the property with

two quantified variables could be written more simply as

all disj p,q: Person | no (p.auctions & q.auctions)850

To further investigate this issue we defined the following metric that counts the

number of uses of disj, whose full definition we omit since it is similar to those

already presented.

@MetricMethod(groupby = COUNT, rule = "Number of uses of disj")

public static Object[] numDisjQuants(@ForAllExecutions Execution exe) { ... }855

Applying this metric revealed that only 4% of the attempts used disj (albeit

with a very high success rate of 70%), an indication that the latter issue was

perhaps not discussed enough in classes nor disj presented as a simple way to

address it.

5.4. Insights on learning Alloy860

One of the goals of Alloy4Fun is to collect data to support empirical studies

on learning and understanding formal specifications, which currently are virtu-

ally non-existent. In fact, the dataset that accompanies this work has already

been used by others to evaluate a technique on the area of model repair [14].

Although we have not yet developed such a principled study, this section865

presents some preliminary results that, taking advantage of the collected data in

both universities, provide some insights about how students learn Alloy. Namely,

we will explore how the the success rate of students relates to: i) the complexity

of the formulas, including the complexity of the temporal component; ii) some

specific features of the language which our anecdotal evidence suggests pose870

more difficulties to students. We also analyze which are the most common

errors/warnings thrown by the analyses. Of all the 35943 executions of the

shared challenges in both universities without errors, 16232 were correct (45%),

meaning that in average each challenge required two attempts to be solved

(after fixing possible errors). Of those, 2468 threw a warning during analysis.875

Additionally, 13752 submissions threw an error during analysis and were not

executed.

36

To this end, we started by classifying a normalized version14 of each chal-

lenge according to a set of required concepts that in our experience have proven

difficult for students to assimilate. Namely, we categorize each challenge regard-880

ing:

• the number of logic or relational operators (OC) and maximum nesting

level (ON)

• the number of quantifiers (QC) and maximum quantifier nesting level

(QN) (including comprehensions)885

• the number of temporal operators (TC) and maximum temporal nesting

level (TN)

• whether it requires manipulating ternary relations (TE)

• whether it requires transitive closures over fields (CF)

• whether it requires transitive closures over expressions (either relational890

expressions or relations defined by comprehension) (CE)

• whether it requires binary temporal operators (BT)

For each exercise, Table 4 presents the average value per challenge for numeric

classifiers, and the number of challenges that fall into each of the (non-exclusive)

Boolean categories.895

Figure 8 presents the success rate of the challenges in relation to the (nor-

malized) complexity of the expected solution (also listing the total number of

challenges for each). Perhaps not surprisingly, our results show that the suc-

cess rate of students correlates better with the nesting level of the expected

solutions (ON) than with their actual size (OC). In the former, success rates900

are above average up to nesting level 5 (44%). This means that the size of the

normalized expressions is not the best predictor for the students’ difficulties –

14The normalized specifications were obtained by expanding into almost pure FOL (or FO-

LTL when temporal logic was required), using no relational operators except for closures.

37

Table 4: Classification of shared Alloy4Fun exercises, average per challenge for numeric values,

challenge count for Boolean ones.

Id Chall. OC ON QC QN TC TN TE CF CE BT

1 10 5.9 3.9 1.2 1.2 0.0 0.0 0 0 0 0

2 15 8.9 4.9 1.9 1.7 0.0 0.0 4 0 0 0

3 10 5.9 3.9 1.2 1.2 0.0 0.0 0 0 0 0

4 15 7.8 4.9 1.9 1.7 0.0 0.0 4 1 0 0

5 8 6.9 4.5 1.3 1.3 0.0 0.0 0 2 1 0

6 7 10.9 5.6 2.9 2.4 0.0 0.0 6 0 2 0

7 4 7.8 5.0 1.8 1.8 0.0 0.0 0 1 0 0

8 4 17.0 6.5 2.0 1.8 0.0 0.0 0 0 1 0

9 20 5.1 4.4 1.1 1.1 1.7 1.7 0 0 0 3

10 18 16.6 7.4 2.3 1.7 2.2 1.7 0 1 0 5

i 1 36.0 8.0 7.0 3.0 0.0 0.0 0 0 0 0

ii 3 11.0 6.3 2.0 1.7 0.0 0.0 0 0 0 0

iii 3 10.3 5.0 1.0 1.0 0.0 0.0 2 0 0 0

iv 3 11.3 7.0 1.7 1.3 1.7 1.7 0 0 0 0

either because “horizontal” complexity is not as impactful as “vertical” one, or

because that horizontal complexity is artificially caused by the expansion into

the normalized version, while the nesting level remains mostly unchanged by905

that transformation. Finer studies could be conducted on the individual chal-

lenges, using strategies such as the one presented in Section 5.3, comparing the

correctness of student submissions with their complexity.

Figure 9 presents the success rate of the challenges in relation to the number

of quantifications in the expected (normalized) specifications, one of the main910

sources of complexity in first-order logic. Again, the nesting level (QN) seems to

be a better predictor than the overall number of expected quantifications (QC),

and with 2 nested quantifications success rate is already below average (40%).

In fact, the success rate for solutions with any nested quantifier (QN > 1) is

34%, well below average, while for those without nesting it stands at 53%.915

Lastly, Fig. 10 presents the success rate of the challenges in relation to the

(normalized) temporal complexity of the required specifications. As expected,

challenges that require any number of temporal operators (TC > 0) have a suc-

cess rate well below those that do not require temporal operators (27% against

38

(a) Success rate over number of operators.

(b) Success rate over nesting level of operators.

Figure 8: Success rate compared with expected normalized formula complexity (also showing

the number of challenges with each complexity).

(a) Success rate over number of quantifiers. (b) Success rate over nesting level of quantifiers .

Figure 9: Success rate compared with expected normalized quantifier complexity (also showing

the number of challenges with each complexity).

39

(a) Success rate over number of temporal opera-

tors.

(b) Success rate over nesting level of temporal op-

erators.

Figure 10: Success rate compared with expected normalized temporal complexity (also show-

ing the number of challenges with each complexity).

49%, respectively). However, students seem to understand well the usage of a920

single temporal operator (43% success rate, close to the average), but success

quickly deteriorates as more temporal operators are required. Comparing with

overall complexity, here the number of required temporal operators actually cor-

relates well with the success rate of the students. Unfortunately, formulas with

temporal nesting level of more than 2 are uncommon and were not available in925

our pool of challenges, so we are unable to properly compare TC with TN.

Figure 11 compares the results of challenge execution classified under each

Boolean category (also listing the total number of challenges for each, which may

overlap). For each of the 4 categories, the number of correct (green) and wrong

(red) executions are presented. Additionally, entry All presents the results for930

all challenges.

As expected, the manipulation of ternary relations (TE), which is frequent

in Alloy specifications, proved problematic (30% success rate). The result is

aligned with our anecdotal evidence, and we already had special care with higher

arity relations in lectures. Concerning closures, usage of a closure operator935

over a relation (CF) was not very problematic (46% success rate, slightly above

average), but challenges that required applying a closure operator to a relational

expression (CE) were the most difficult to solve among our categories (18%

success rate). We had some anecdotal evidence that closures were difficult for

40

Figure 11: Executions per class of challenge (also showing the number of challenges under

each category).

students, but this discrepancy between the two cases was rather surprising,940

meaning that special attention should be given to the latter case in lectures.

Interestingly, for challenges that require binary temporal operators (BT), the

success rate (23%) is close to the one for challenges requiring nested temporal

operators shown in Fig. 10 (21%), so both concepts appear to be a bottleneck

for students.945

We also collected statistics about typical errors and warnings, with Tables 5

and 6 presenting the 10 most commonly found error and warning messages, re-

spectively. Concerning errors, as expected, the most frequent are basic parsing

errors (corresponding to messages 1, 3, and 8, and including, for example, paren-

thesis problems or misspelled identifiers), totaling around 44% of the errors. Of950

the remaining, the most frequent are incorrectly applying logic operators to re-

lational expressions and vice-versa (messages 2, 5, and 7), in total 36% of the

errors, and simple typing errors related to arity (messages 4, 6, 9, and 10), in

total 19% of the errors. The reader unacquainted with Alloy could find the

frequency of the former rather surprising, but this is a rather frequent error955

due to the syntactic similarity between some logical and relational operators

(for example, not for negation vs. no for emptiness check or && for conjunction

vs. & for intersection). Fortunately, Alloy has alternative syntax for many logic

operators (for example, and for conjunction) and maybe instructors should rec-

41

Table 5: Most common error messages.

Message #

1 There are . . . possible tokens that can appear here. 2088

2 This must be a formula expression. 1216

3 The name . . . cannot be found. 1087

4 in can be used only between 2 expressions of the same arity. 761

5 This must be a set or relation. 678

6 This cannot be a legal relational join. 661

7 This expression failed to be typechecked. 269

8 The "all x" construct is no longer supported. 248

9 ^ can be used only with a binary relation. 158

10 ~ can be used only with a binary relation. 144

Table 6: Most common warning messages.

Message #

1 The join operation here always yields an empty set. 646

2 This variable is unused. 377

3 Subset operator is redundant, because the left & right subexpressions are always disjoint. 319

4 ^ is redundant since its domain and range are disjoint. 110

5 Subset operator is redundant, because the right subexpression is always empty. 92

6 Subset operator is redundant, because the left subexpression is always empty. 74

7 & is irrelevant because the two subexpressions are always disjoint. 43

8 <: is irrelevant because the result is always empty. 35

9 = is redundant, because the left & right expressions always have the same value. 22

9 = is redundant, because the left & right expressions are always disjoint. 22

9 The value of this expression does not contribute to the value of the parent. 22

ommend using that alternative instead. Concerning warnings, all but the second960

most common message (unused variables, 22% of the total warnings) are warn-

ings about potentially irrelevant expressions – formulas that are trivially true

or false or expressions that always denote an empty set – a testimony to the

usefulness of Alloy’s sophisticated type system [15].

6. Concluding remarks and future work965

This paper presented Alloy4Fun, a web application for online editing and

sharing of Alloy models and instances, that also allows the automated assess-

ment of simple specification challenges. Its main intended use is in an edu-

42

cational context, and our preliminary evaluation in graduate formal methods

courses provided evidence that students found the automated assessment fea-970

ture useful for learning Alloy and Electrum (and the sharing feature less so).

We also collected evidence that some features of the Alloy language are particu-

larly problematic for students, and should be addressed with particular care by

tutors. A data analysis library was developed to simplify the mining of useful

data from the derivation trees, and we have shown how this library can be used975

to write metrics that help identify possible learning breakdowns in the class.

We intend to continue using Alloy4Fun in our formal methods courses in the

upcoming years, collecting more data to support more detailed and informed

analyses about the language usage. We also intend to start running some of

the metrics server-side shortly, with the resulting data and graphics available to980

owners of secret links at the click of a button, further simplifying the process of

timely identifying learning breakdowns.

We still believe that the ability to simply share models and instances to

permalinks is useful – even in contexts other than the educational, for instance

to share models in publications. However, due to the feedback and usages results985

regarding that feature, we are wondering whether the full anonymity decision

was too strict. A hybrid approach could be followed, for instance like the one

followed in the CodeWorld platform15, where sessions can be fully anonymous,

but accounts can be created to keep track of the created and shared models.

This would also be a step towards a future integration with learning management990

systems in order to automatically grade students.

Another open research line, also highlighted in the questionnaire results, is

how to provide more intuitive feedback to students regarding incorrect submis-

sions. One possibility is to incorporate in Alloy4Fun an alternative instance

visualizer more amenable for dynamic systems [16]. Another one is to explore995

fault localization and repair techniques to identify possibly issues and suggest

fixes.

15https://code.world/

43

https://code.world/

Acknowledgements

We would like to thank Daniel Jackson for the helpful comments and sug-

gestions about the design of Alloy4Fun, and also all the students that were beta1000

testers.

References

[1] D. Jackson, Software Abstractions: Logic, Language, and Analysis, 2nd

Edition, The MIT Press, 2012.

[2] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, D. Kuperberg, Lightweight1005

specification and analysis of dynamic systems with rich configurations, in:

SIGSOFT FSE, ACM, 2016, pp. 373–383.

[3] N. Macedo, A. Cunha, J. Pereira, R. Carvalho, R. Silva, A. C. R. Paiva,

M. S. Ramalho, D. C. Silva, Experiences on teaching Alloy with an auto-

mated assessment platform, in: ABZ, Vol. 12071 of LNCS, Springer, 2020,1010

pp. 61–77.

[4] J. Brunel, D. Chemouil, A. Cunha, N. Macedo, Simulation under arbitrary

temporal logic constraints, in: F-IDE, Vol. 310 of EPTCS, 2019, pp. 63–69.

[5] R. Boyatt, J. Sinclair, Experiences of teaching a lightweight formal method,

in: FORMED, 2008, pp. 71–80.1015

[6] A. A. Sioson, Experiences on the use of an automatic C++ solution grader

system, in: IISA, IEEE, 2013, pp. 1–6.

[7] K. Mangaroska, M. N. Giannakos, Learning analytics for learning design: A

systematic literature review of analytics-driven design to enhance learning,

IEEE Transactions on Learning Technologies 12 (4) (2019) 516–534.1020

[8] T. Ball, P. de Halleux, N. Swamy, D. Leijen, Increasing human-tool inter-

action via the web, in: PASTE, ACM, 2013, pp. 49–52.

44

[9] N. Tillmann, J. de Halleux, T. Xie, J. Bishop, Pex4Fun: A web-based en-

vironment for educational gaming via automated test generation, in: ASE,

IEEE, 2013, pp. 730–733.1025

[10] N. Tillmann, J. de Halleux, Pex – White box test generation for .NET, in:

TAP, Vol. 4966 of LNCS, Springer, 2008, pp. 134–153.

[11] J. Pereira, A web-based social environment for Alloy, Master’s thesis, Uni-

versidade do Minho, Escola de Engenharia (2016).

[12] C. Liu, N. Macedo, A. Cunha, Simplifying the analysis of software design1030

variants with a colorful alloy, in: SETTA, Vol. 11951 of LNCS, Springer,

2019, pp. 38–55.

[13] N. Macedo, A. Cunha, A. C. R. Paiva, Alloy4fun dataset for 2020/21 (Apr.

2021). doi:10.5281/zenodo.4676413.

[14] S. G. Brida, G. Regis, G. Zhengz, H. Bagheriz, T. Nguyenz, N. Aguirre,1035

M. Frias, Bounded exhaustive search of Alloy specification repairs, in:

ICSE, IEEE, 2021, pp. 1135–1147.

[15] J. Edwards, D. Jackson, E. Torlak, A type system for object models, in:

SIGSOFT FSE, ACM, 2004, p. 189–199.

[16] R. Couto, J. C. Campos, N. Macedo, A. Cunha, Improving the visualization1040

of Alloy instances, in: F-IDE, Vol. 284 of EPTCS, 2018, pp. 37–52.

45

https://doi.org/10.5281/zenodo.4676413

	Introduction
	Alloy4Fun overview
	Formalizing Alloy4Fun with Alloy
	Writing and mining challenges
	How to create challenges
	How to mine challenge statistics

	Experiences on teaching with Alloy4Fun
	Alloy4Fun exercises
	Student usage and adoption
	In-depth analysis of learning outcomes
	Insights on learning Alloy

	Concluding remarks and future work

