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ABSTRACT
Background: Many programming environments include automated
feedback in the form of hints to help novices learn autonomously.
Some experimental studies investigated the impact of automated
hints in the immediate performance and learning retention in that
context. Automated feedback is also becoming a popular research
topic in the context of formal specification languages, but so far
no experimental studies have been conducted to assess its impact
while learning such languages. Objective: We aim to investigate
the impact of different types of automated hints while learning
a formal specification language, not only in terms of immediate
performance and learning retention, but also in the emotional re-
sponse of the students. Method: We conducted a simple one-factor
randomised experiment in 2 sessions involving 85 BSc students
majoring in CSE. In the 1st session students were divided in 1 con-
trol group and 3 experimental groups, each receiving a different
type of hint while learning to specify simple requirements with the
Alloy formal specification language. To assess the impact of hints
on learning retention, in the 2nd session, 1 week later, students
had no hints while formalising requirements. Before and after each
session the students answered a standard self-reporting emotional
survey to assess their emotional response to the experiment. Re-
sults: Of the 3 types of hints considered, only those pointing to the
precise location of an error had a positive impact on the immediate
performance and none had significant impact in learning retention.
Hint availability also causes a significant impact on the emotional
response, but no significant emotional impact exists once hints
are no longer available (i.e. no deprivation effects were detected).
Conclusion: Although none of the evaluated hints had an impact on
learning retention, learning a formal specification language with
an environment that provides hints with precise error locations
seems to contribute to a better overall experience without apparent
drawbacks. Further studies are needed to investigate if other kind of
feedback, namely hints combined with some sort of self-explanation
prompts, can have a positive impact in learning retention.
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1 INTRODUCTION
Tutoring systems have long employed automated feedback to sup-
port students learning to program, namely help them assess the
correctness of their programs and suggest hints to fix incorrect
ones. Naturally, several studies have been performed to evaluate
the impact of such hints on learning (sometimes with contradictory
conclusions). Formal specifications are starting to permeate vari-
ous software engineering techniques (such as automated testing,
code synthesis, or contract programming) but tutoring systems and
automated feedback for learning formal specification are still rare.

Alloy [17, 18] is a formal specification language popular in in-
troductory courses to formal methods in software engineering1.
It combines relational and temporal logic, and is supported by an
Analyzer2 that automates the generation of scenarios and the veri-
fication of properties. Relational logic extends first-order logic with
operators that simplify the specification of structural properties
using a navigational style resembling object-oriented programming.
Temporal logic was a recent addition to this language [25], allowing
the specification of the behaviour of systems and their expected
temporal requirements using a linear time logic akin to TLA+ [21].

Recently, the Alloy4Fun online platform was developed to serve
as an auto-grader for teaching Alloy [28]. Recent advances on topics
such as specification repair or principled scenario generation will
soon enable the deployment of automatic hints in such a platform.
However, there is some evidence that both students and experienced
practitioners struggle to write correct formal specifications with
Alloy [30], and that adding automatic feedback to the process might

1http://alloytools.org/citations/courses.html
2http://alloytools.org/
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not be effective [11, 12]. In fact, it is known that the human aspects
of formal methods are mostly unexplored [20].

It is unclear if the results from the studies on the impact of hints
in learning programming also apply when learning to write for-
mal specifications. Moreover, such studies mostly focus on test
performance and not on the role of emotions in the educational
context. Emotions can have an impact on memory [10, 24, 37], at-
tention and motivation [24, 37], academic performance/learning
process [3, 14, 37, 42], or cognitive task performance [14, 37], which
is further underlined by recent neuroscience research addressing
the neurological processes that formalise the link between emotion
and cognition [24]. Given the importance of this topic, standard
(and well-validated) emotional response assessment tools and ques-
tionnaires should be employed in education related studies.

This work is a first step towards investigating the impact of au-
tomated feedback in learning formal specification. Specifically, we
present the first user study assessing the impact of automated hints
in learning the Alloy specification language, and the first to include
an analysis of the emotional response to hints using standard ques-
tionnaires. Our experiment tested whether hints have an impact
on the immediate performance while learning, on the future per-
formance of students while specifying requirements without hints
(learning retention), and on their emotional response during the
whole process. We considered 3 types of hints that could be auto-
mated in a platform like Alloy4Fun: (1) highlighting error locations,
(2) providing visual counter-examples, and (3) providing natural
language descriptions of incorrectly specified requirements. We
conducted a simple one-factor randomised experiment in 2 sessions
involving 85 undergraduate students majoring in Computer Science
and Engineering (CSE). In the 1st session participants with no Alloy
background were asked to fix incorrect specifications supported by
different types of hints (with a control group without hints); a week
later, the participants were asked to specify requirements from
scratch without any help of hints. We provide a research artifact so
that the experiment and the analysis can be replicated [26].

The remainder of this paper is structured as follows. Section 2
presents related studies assessing the impact of automated hints
in learning. Section 3 presents the design of our experience. The
results are presented in Section 4. Section 5 presents threats to the
validity of our experiment, followed by a discussion of the results
in Section 6. Section 7 wraps up the paper with a brief conclusion.

2 RELATEDWORK
This section explores existing work on the impact of automated
feedback in CSE learning.

Next-step hints. A popular type of feedback provided by auto-
mated tutoring systems are next-step hints [34], that given an incor-
rect program try to guide the student towards a solution. Strategies
to obtain these hints include data-driven approaches based on pre-
vious student attempts, search-based approaches that produce edit
sequences to reach a solution, or relying on experts’ annotations of
known problematic patterns. We are not aware of any next-state
hint technique for formal specifications, but they could be imple-
mented using existing automatic repair techniques given an oracle
written by the lecturers. For instance, there are techniques to fix
Object Constraint Language (OCL) constraints given valid model

instances [8], and Alloy repair techniques have been proposed that
use as oracles test cases [43], assertions [4, 5, 47] or predicates [6].

Despite their popularity, research on the impact of next-step code
hints in learning has been contradictory (although studies often
use different learning environments and different types of hints). In
the context of learning Lisp, a variety of feedback types and feed-
back delivery timings improved immediate performance and future
performance in a post-test [9]. Data-driven hints for Python have
shown no impact on learning (correct attempts at first try in post-
tests) and only marginal positive impact in immediate performance
(solving speed) [40], but also no significant impact in immediate
performance (attempts until a correct one) nor in learning (per-
formance in post-tests) [38]. Expert-authored hints for common
mistake patterns in BlockPy resulted in better performance (test
score) in the beginning of the semester, but the benefits faded out by
the end of the semester [15]. When learning Prolog, both automati-
cally highlighting problematic patterns and additionally providing
expert-curated feedback improved immediate performance, and
the latter also reduced the number of incorrect attempts (but not
solving time) [23]. Known causes for limited learning effects when
using this kind of feedback include hint abuse and avoidance by
the students [1] and the fact that they drive the students to focus
more on ‘how’ to fix errors than ‘why’ [31]. Although some of
these studies were complemented with questionnaires, none used
standard tools to measure emotional response.

Counter-examples as hints. As far as we are aware, Alloy4Fun is
the only platform that has been designed to support the learning of
formal specifications. The Alloy Analyzer – and Alloy4Fun – can
generate instance scenarios for validation and counter-example for
broken expected properties. These are presented graphically, and
the visualisation can be customised by users. Alloy exercises in Al-
loy4Fun are usually checked by semantic equivalence against an or-
acle specification [28], so students naturally get a counter-example
for incorrect attempts. Despite being one of the most popular fea-
tures of Alloy, and a preliminary study showing that scenarios may
improve the understanding of formal specifications [12], there is
also evidence suggesting novices struggle to interpret instances
and counter-examples [30]. In [28] the authors have introduced
additional information in the counter-examples to help students in-
terpret them. Techniques for guided instance generation [27, 36, 46]
could improve the quality of this kind of feedback, but a preliminary
study with students has shown mixed results [11].

In learning programming, this kind of feedback has similarities
with auto-grading platforms that automatically generate test cases
as evidence that attempts are not yet correct. Despite the concern for
over-reliance on this kind of feedback [2], a recent study has shown
that it improved immediate performance of students learning Java,
and that their future performance was not affected negatively [35].

Enhancing hints with explanations. Other approaches have fo-
cused on promoting code comprehension by the students. Ap-
proaches include providing (and eliciting) explanations, and vi-
sualisations of executions, with varied results [16].

In the block-based programming environment Snap!, data-driven
next-step hints enhancedwith expert-authored explanations showed
no significant impact on immediate or future performance (com-
pleted tasks) [31]. However, a different study showed that next-step
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hints with and without prompts for self-explanation improved im-
mediate performance, but that only hints with self-explanation
improved the performance in future tasks [33]. A conceptual repli-
cation study concluded that hints supported by explanations and
self-explanation prompts improved efficiency (completed tasks and
time spent), but the impact on future tasks was inconclusive [32].
When learning Python, a study has compared the performance
of students when provided with FAQ-like hints with and without
reflection prompts, concluding that the combination with reflection
prompts had an immediate and long term impact on performance
(assignment score), without decreasing efficiency (number of at-
tempts) [7]. A different approach, also for Snap!, relied instead on
worked examples, a demonstration of how other, similar exercises
are solved. A qualitative study showed students found it more help-
ful than next-step hints [44]. A study comparing the performance
of students learning Python supported only by test cases, test cases
accompanied by next-step hints, and test cases supported by trace
visualisations showed that only the next-step hints improved imme-
diate performance, and that problem comprehension was actually
lower when supported by the trace visualisations [39].

Despite the possible positive impact on learning, many of these
techniques require experts to write explanations. Recent advances
in LLMs have already shown to be partially successful in explaining
code snippets [29], which could potentially automate this process
in the educational context. As far as we know, no work has been
published on using explanations to help fixing formal specifications.

3 EXPERIMENTAL SETTING
This section presents our research goal and describes in detail the
experimental setting.

3.1 Goal
Analyse different types of hints for fixing formal specifications
For the purpose of comparing their effect
With respect to immediate performance, learning retention, and
emotional response
From the point of view of researchers
In the context of BSc-level students majoring in CSE.

3.2 Procedure
The factor under investigation is the type of hint provided to stu-
dents for fixing an incorrect specification, and we examined it with
a control group and 3 experimental groups, corresponding to 3
different kinds of automatable hints. More detail about the tasks,
the different types of hints, and their instrumentation in Alloy4Fun
is given in Sections 3.6 and 3.7. To analyse the impact of these
different hints we conducted a simple one-factor randomised exper-
iment in the last two weeks of March 2023, in which the treatment
administered to each participant corresponds to one of the 4 groups.

Since our goal was to assess the impact not only on the immediate
performance, but also on learning retention, we divided the experi-
ment in 2 sessions: in the 1st session, where participants first learned
about Alloy, the different formal specification tasks were aided by
hints (except for the control group); in the 2nd session, 1 week
later, all participants attempted to solve formal specification tasks
without hints. In both sessions the participants answered a standard

Figure 1: Overview of the experimental procedure

emotional questionnaire (more details later) before and after the
experiment to measure their emotional response. An overview of
the research procedure is presented in Figure 1.

The 1st session proceeded with the following steps:
(1) Researchers greeted the participants and explained the over-

all research objectivewithout disclosing that each participant
would receive a different treatment. Each participant was
randomly assigned to a group by drawing from a pool an
unique identification code (ID) whose last character iden-
tified the treatment group. Subsequently, the participants
were directed to 6 different physical rooms, each mixing
participants with different treatments.

(2) A 1-page “Alloy in a Nutshell” guide to the language was
provided to each participant, which they had around 10min
to study and that they could consult during the tasks.

(3) A link to the demographic questionnairewas provided, which
included questions such as the given ID, age, gender, famil-
iarity with the Alloy language, and average academic grade.
At the end of the demographic questionnaire participants
were redirected to the emotional questionnaire.

(4) After the questionnaires, the participants were redirected
to an Alloy4Fun page with the 1st of 12 tasks (described
in Section 3.6). Each task had a maximum timeout of 5min
to complete (the maximum duration of the experiment was
thus 60min). After successfully finishing each task, or after
the timeout, participants had to proceed to the next task. The
Alloy4Fun page for each task had different hints according
to the assigned treatment (detailed in Section 3.7).



ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Alcino Cunha, Nuno Macedo, José Creissac Campos, Iara Margolis, and Emanuel Sousa

(5) After the last task the students were redirected again to the
emotional questionnaire, and, after completing that one, to
a standard User Experience (UX) questionnaire.

The 2nd session proceeded 1 week later with the following steps:

(1) Participants answered the emotional questionnaire.
(2) At the end of the questionnaire the participants were redi-

rected to an Alloy4Fun page with the 1st of 12 tasks, with no
hints provided to any of the groups. The tasks had the same
5min timeout (maximum running time was again 60min),
and this time no hints were provided to any of the groups.
Participants could still consult the 1-page Alloy sheet.

(3) After the last task the students were again redirected to the
emotional and UX questionnaires.

The provided UX questionnaire was the standard UMUX [13]
that measures system usability through 4 questions on a 7-point
Likert scale. For the emotional questionnaire we resorted to PrEmo
2 [22], a pictographic tool composed of 14 images depicting different
categorical emotions (7 positive and 7 negative), that can be used
to evaluate participants’ self-reported emotional feelings towards a
task and an experiment as a whole. A score for each emotion was
reported on a 5-point Likert scale. An open-ended question box
was also provided to allow justifications or additional comments.

3.3 Variables
The only independent variable of our experiment is the Type of
Hint (HINT), operationalised by giving students different types of
hints while learning formal specification in the 1st session. We
have a control group with no-hints (N) and 3 experimental groups,
corresponding to 3 different kinds of automatable hints: (L) the
precise location of the error in a wrong specification, (E) a counter-
example that illustrates why a specification is wrong, and (D) a
natural-language description of a wrong specification.

We have three dependent variables:

• Immediate performance while learning with different kinds
of hints in the 1st session, operationalised with two perfor-
mance metrics: PROD1, the immediate productivity, mea-
sured as the number of tasks successfully completed in the
1st session (ranging from 0 to 12), and EFF1, the immediate
efficiency measured as the ratio between the number of tasks
successfully completed and the total number of attempts to
solve all the 12 tasks in the 1st session.

• Learning retention while performing similar tasks without
hints in the 2nd session, operationalised with similar perfor-
mance metrics: PROD2, the future productivity, and EFF2,
for future efficiency.

• Emotional response during the learning process, operatio-
nalised by two metrics aggregating the differential in the
self-reported emotional feelings in the PrEmo 2 surveys be-
fore and after both sessions: EMO1, the immediate emotional
response, measured as the sum of differential in positive emo-
tions minus the sum of differential in negative emotions dur-
ing the 1st session, and EMO2, the future emotional response,
measured similarly. For each emotion we only measured if
there was a variation in any direction (-1 to +1), so these
aggregates vary in a scale from -14 to +14.

3.4 Hypotheses
We formulated 6 hypotheses, one for each of the above opera-
tional variables. The null hypotheses state that the type of hint
does not have an effect on immediate productivity (𝐻PROD1

0 ), im-
mediate efficiency (𝐻EFF1

0 ), future productivity (𝐻PROD2
0 ), future

efficiency (𝐻EFF2
0 ), immediate emotional response (𝐻EMO1

0 ), and fu-
ture emotional response (𝐻EMO2

0 ). On the contrary, the alternative
hypotheses state that the type of hint has an effect on immediate
productivity (𝐻PROD1

1 ), immediate efficiency (𝐻EFF1
1 ), future pro-

ductivity (𝐻PROD2
1 ), future efficiency (𝐻EFF2

1 ), immediate emotional
response (𝐻EMO1

1 ), and future emotional response (𝐻EMO2
1 ).

All the hypotheses are formulated as two-tailed since no theo-
retical or empirical support exists to presume a direction for the
effect. As discussed in Section 2, there is evidence in the literature
that precise location hints have a positive effect on immediate per-
formance, but it is not clear a priori if such effect would transfer
to the context of formal specification. Also, there is some evidence
that students struggle to understand Alloy counter-examples, but,
as will be described below, we handpicked ideal counter-examples
(e.g. minimal) and annotated them to make clear if they should be
rejected or accepted by the correct specification.

3.5 Participants
Participants were recruited from the 2022/23 edition of a Human-
Computer Interaction (HCI) course in the final semester of a CSE
BSc degree in the University of Minho, Portugal. To incentivize
students to sign up, 1 extra point in the final grade of the course
(out of 20 possible) was offered (being an extra credit, students that
did not sign up could still reach the maximum mark), and a total of
92 students volunteered. The procedure was validated by the Ethics
Council of the University of Minho where the experiment took
place. As usual in CSE degrees, these students had attended courses
on discrete maths and logic in the 1st year of the bachelor, where
they were exposed to the basics of set theory and first-order logic.
In the 2nd year they had some practice on the formal specifica-
tion of simple imperative algorithms with pre- and post-conditions
with first-order logic in an algorithmics course, and minimal ex-
posure to OCL for UML models in a software development course,
both relatively common subjects in CSE degrees. In these courses
they practised with pen-and-paper exercises, and this experiment
would be, in principle, their first contact with a formal specification
language with automatic analysis, and Alloy in particular. This
background is similar to that of most CSE bachelors around the
world, so we believe our sample is representative of the typical can-
didates to BSc-level courses where formal specification is taught in
depth (including most courses that teach Alloy).

Of the 92 students that signed up to participate (by signing the
informed consent form in the welcome session), 2 were excluded
due to attrition (did not complete the procedure in the 2nd session),
and 5 were excluded because they reported to have some prior
knowledge of Alloy in the demographic survey. We ended up with
85 participants with the following demographics: 14 females, 70
males, 1 who preferred not to identify, with ages ranging from 19
to 29 years old (M = 20.8 years, SD = 1.5 years). The self-reported
average grade (in a scale from 10 to 20) in previously completed
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Figure 2: Alloy4Fun landing page with task #1 of the 1st
session (treatment, i.e., hint message, omitted)

courses in the bachelor degree ranged between 11.5 and 19.0 (M =
14.15, SD = 1.7), with one student preferring to not disclose it.

After the random assignment to the the 4 treatment groups and
the exclusion of 7 participants, we ended up with the following
distribution of the 85 students: N – 21, L – 25, E – 19, and D – 20.
Since past grades could have a significant impact on the perfor-
mance, we checked that the 4 groups were balanced in that respect.
A Kruskal-Wallis test confirmed that the differences between the
groups was not statistically relevant (𝜒2 (3) = 1.43, p = 0.698).

3.6 Experimental objects
In the 1st session participants were asked to fix incorrect Alloy spec-
ifications of natural language requirements, while being supported
by hints. In the 2nd session, participants were instead required to
specify from scratch natural language requirements, without being
supported by hints. The tasks of the 2nd session were more open
since we wanted to measure the impact of hints in learning by
performing more realistic posterior tasks.

All requirements in the tasks concerned 2 simple domain mod-
els, one of a photo sharing social network and another of a course
management system. In each session half (6) of the incorrect specifi-
cations encoded requirements of the 1st domain model, and half (6)
of the 2nd. Both the UML depiction of the models as class diagrams
and their Alloy encoding were made available to the participants
on the printed 1-page Alloy sheet, and the latter were also included
in the respective Alloy4Fun tasks, as described in Section 3.7. These
domain models were directly encoded in Alloy by declaring entities
as signatures and relationships as fields (the encoding of the social
network domain model in Alloy can be seen in the top of Figure 2).

Both the Alloy sheet and the Alloy fixing exercises of the 1st ses-
sion focused on a small subset of the language that could reasonably
be learned autonomously in the short duration of the experience.
The tasks of the 2nd session could also be solved with this subset,
which included: set operators union (+), intersection (&), and differ-
ence (-); relational dot-join composition (.); subset (in), equality
(=), and inequality (!=) checks; cardinality checks (no, some, lone,
one); Boolean connectives (not, and, or, implies), and universal
quantification (all). The semantics of most of these operators was
familiar to the participants (which had previous contact with first-
order logic and set theory, as described in Section 3.5). The main
exception was the relational composition operator, the most-used

operator in the Alloy language and the key new concept partici-
pants had to learn during the experiment. We should stress that
the dot-join composition operator of Alloy is different from the dot
operator of object-oriented languages and OCL, namely always re-
turning a set of related elements, and allowing fields to be navigated
and chain-composed in any direction.

To (incorrectly) formalise the requirements we used the navi-
gational style typical of Alloy, where specifications usually have
very few quantifiers, and a combination of relational composition
and set operators are used to compute sets of domain elements that
should be somehow related or have a given cardinality. In the 1st
session we made sure that students were exposed to all the above
operators (except all the Boolean connectives, which they were
well familiar with), ensuring that at least one incorrect specifica-
tion used each operator. Relational composition was used in all the
requirements. The incorrect specifications were always one error
away from a correct one, and we designed the 12 tasks to cover
the following 4 types of errors (3 tasks for each): one atomic test is
incorrect; one set operator is incorrect; one relational composition is
used incorrectly; or one (sub-)expression denoting a set is wrongly
specified. Table 1 shows one task example for each type of error
(for the social network domain model presented in Figure 2), where
# denotes the position in which the task appears in the 1st session.
For instance, Task #1 incorrectly stated that for all photos there is
at most one user related through posts; a possible fix would be to
replace lone by one and force exactly one user.

Our study focused on hints that could in theory be automatically
generated and implemented in a platform such as Alloy4Fun. One
of the goals of this study was to help us and the community decide
which type of hint was worth further research and deployment.
Since Alloy4Fun currently has no support for hints, in our exper-
iment we manually curated the hint provided for each task. This
is also one of the reasons for having the Alloy exercises of the 1st
session designed as incorrect specifications to be fixed (for which
we know what is the error), rather than having the participants
write a specification from scratch – the other being that we wanted
the first tasks to be completed in a reasonable time by practitioners
with no Alloy background. We now briefly discuss the rationale for
including each type of hint, how they were hand-picked for each
task, and how their generation could in principle be automated.

Error location (L). This is themost popular type of hint in environ-
ments for teaching programming. The erroneous syntactic element
is highlighted, and for each type of error a standard sentence was
formulated pointing to the highlighted element. For example, when
the error is in a set operator, the sentence was “Change the high-
lighted operator in the following incorrect specification”. As seen in
Section 2, this type of hint could be automatically generated by one
of the existing Alloy repair techniques.

Counter-example (E). This is the usual feedback Alloy provides
when analysis are run, thus it was natural to assess the impact
of using visually depicted counter-examples. As mentioned above,
these can be automatically generated but there is some evidence
that such (random) counter-examples are difficult to interpret by
students. Thus, we hand-picked a minimal counter-example where
the issue is evident, and clarify in a sentence whether “The example
below is allowed by the following incorrect specification but should
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# Error Natural language requirement Incorrect Alloy specification to be fixed
1 Test Every image is posted by one user all p:Photo | lone posts.p
2 Operator Users cannot follow themselves all u:User | no u.follows-u
4 Composition Influencers are followed by everyone else all i:Influencer | i.follows = User-i
5 Expression Users that post an ad cannot post other kinds of photos (posts.Photo).posts in Ad

Table 1: Task examples from the 1st session

be forbidden” or the other way around. Detecting to which of these
two classes a counter-example belongs can be easily automated [28].
To generate minimal counter-examples, we could in principle use
AlloyMax [45], an Alloy extension with support for minimisation /
maximisation of relations.

Error description (D). For this hint we included the sentence
“The following specification incorrectly states that. . . ” followed by
a natural language sentence that describes the requirement that
is wrongly being specified (instead of the desired one). This is a
type of hint that we often give to students in our Alloy classes.
With the recent advances in LLMs such hints could in principle
be automatically generated, and thus we wanted to assess their
impact in a controlled experiment, to help us decide if this was
worth pursuing in future research.

3.7 Instrumentation
The experiment was instrumented in Alloy4Fun, a web-platform3

for sharing, editing and analysing Alloy specifications, with an in-
tegrated counter-example visualiser, that has been used in graduate
formal specification courses for several years. Compared to the
Alloy Analyzer it introduces the notion of secret predicate, which
allows lecturers to define specification challenges where students
must write semantically equivalent predicates. Besides supporting
autonomous studying, Alloy4Fun was also intended to support
studies on formal methods education, and all interactions with the
platform are anonymously recorded and available to researchers.
This information includes the submitted specification, the parent
specification (for the identification of sequential attempts), and the
outcome of the analysis. Alloy4Fun datasets have already been used
by researchers to evaluate Alloy repair techniques [4–6, 47]. Imple-
menting this experiment required only minimal changes, namely
implementing a timer, persistent feedback messages and instances,
and navigation through sequences of exercises.

The treatments for the different groups of the independent vari-
able varied only in the shape of a persistent message presented be-
low the editor in the 1st session (and an additional counter-example
in the E group), as already described in Section 3.6. Figure 3 presents
the hint feedback for task #1 presented in Table 1. All other UI ele-
ments remained unchanged between the different groups.

As shown in Figure 2, in each task of the 1st session participants
are presented with an Alloy model encoding a domain model (signa-
ture declarations) and a predicate spec annotated with the expected
requirement written in natural language pre-filled with an incorrect
specification. The participants are expected to change the incorrect
specification and then automatically check the correctness of their
attempt using the button “Test Specification”. At that point, they

3http://alloy4fun.inesctec.pt/

(a) Group N

(b) Group L

(c) Group E

(d) Group D

Figure 3: Treatment groups for task #1 of the 1st session

are informed that the attempt is correct (in which case they were
blocked from further attempts and had to proceed to the next task
using button “Next Challenge”) or incorrect, without any further
feedback. In the latter case, participants can perform additional
attempts until the task times out. This interaction was similar in
all treatment groups. The hint message remains the same during
all attempts to solve one task (recall that these have been manually
designed and not automatically generated). By editing the incor-
rect specification, participants lose access to the original incorrect
specification to which the hint refers to, so all persistent messages
also include the original incorrect specification (see Figure 3).

In the 2nd session, participants had a similar interface, except
that rather than being pre-filled with an incorrect specification,
the predicate they were expected to fill was empty. The persistent
message simply stated “Write the missing specification above”. Par-
ticipants could still hit “Test Specification” multiple times and were
informed whether the specification was correct or not.

To automatically check the correctness of the participants’ sub-
missions, we relied on the Alloy solver engine to test the equiva-
lence of the participants’ specifications against the oracle defined by
us. This allows for specifications that are semantically equivalent to
our oracle, but possibly syntactically different, to be still considered

http://alloy4fun.inesctec.pt/
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as correct. This technique has been used in Alloy courses to develop
exercises in Alloy4Fun with support for auto-grading [28].

All the tasks, along with the curated hint feedback, were added
to the Alloy4Fun database and made accessible through persistent
links. For each participant, a unique sequence of 12 entries for
each session was created in the database, one per task, and each
participant ID was part of the persistent link to the 1st of those
tasks. Having unique entries for each task and each participant was
required in order to correctly identify the data of each participant
(since Alloy4Fun is completely anonymous). Due to a technical
error, for 3 of the 12 tasks in the E group, all of the 2nd domain
model, the counter-example did not update correctly. We discuss
the possible impact of this instrumentation error in Section 5.

This infrastructure allowed us to easily collect the 4 performance
metrics. For each participant, we counted howmany of the assigned
12 entries had a correct submission, thus obtaining PROD1 and
PROD2; by additionally collecting all incorrect attempts to those
entries, we calculated EFF1 and EFF2.

4 RESULTS
This section reports the results of the data analysis. For each opera-
tional variable we present the descriptive statistics and box-plots
depicting data. For the inferential statistics, since several of our
samples are not normally distributed we used the non-parametric
Kruskal-Wallis test to check our null hypotheses, a standard sta-
tistical test for checking whether two or more samples of equal or
different sizes originate from the same distribution, and often ap-
plied in the literature on software engineering experimentation [19].
We also used the post-hoc non-parametric Dunn’s test, the appropri-
ate analysis technique to determine pairwise significant differences
when a Kruskal-Wallis test rejects a null hypothesis. We also applied
the Benjamini-Hochberg correction to decrease the false discovery
rate in this post-hoc analysis.

4.1 Immediate performance
The descriptive statistics and box-plots for the immediate produc-
tivity PROD1 are presented in Table 2a and Figure 4a, respectively.
Group L, which had the hints with precise error locations, has a sub-
stantially higher mean and median, when compared to the others.
A Kruskal-Wallis test confirms a significant difference among hint
types (𝜒2 (3) = 32.356, 𝑝 < 0.01) and thus we accept the alternative
hypothesis 𝐻PROD1

1 . The post-hoc Dunn’s test only showed a sig-
nificant difference among the L group and all the other groups (for
the comparison L-N we have 𝑧 = −4.113, 𝑝 < 0.01, for L-E we have
𝑧 = −4.211, 𝑝 < 0.01 and for L-D we have 𝑧 = −5.024, 𝑝 < 0.01).

The descriptive statistics and box-plots for the immediate effi-
ciency EFF1 are presented in Table 2b and Figure 4b, respectively.
Again, group L has a substantially higher mean and median, when
compared to the others. A Kruskal-Wallis test confirms a signifi-
cant difference among hint types (𝜒2 (3) = 24.706, 𝑝 < 0.01) and
thus we accept the alternative hypothesis 𝐻EFF1

1 . Again, the post-
hoc Dunn’s test only showed a significant difference among the L
group and all the other groups (for the comparison L-N we have
𝑧 = −3.567, 𝑝 < 0.01, for L-E we have 𝑧 = −3.586, 𝑝 < 0.01 and for
L-D we have 𝑧 = −4.454, 𝑝 < 0.01).

Overall, the results suggest that, among the studied types of
hints, only those with precise error locations can have a significant
impact on the immediate performance.

4.2 Learning retention
The descriptive statistics and box-plots for the future productivity
PROD2 are presented in Table 2d and Figure 4d, respectively. The
means and medians of all groups are quite similar, with group L
(precise locations in 1st session) now having the lowest mean. The
wide dispersion and range indicates a great amount of variability
between participants. A Kruskal-Wallis test showed that the differ-
ence among hint types is not significant (𝜒2 (3) = 1.489, 𝑝 = 0.68)
and thus we accept the null hypothesis 𝐻PROD2

0 .
The descriptive statistics and box-plots for the future efficiency

EFF2 are presented in Table 2e and Figure 4e, respectively. Again,
the means and medians of all groups are now quite similar, with
group L having the lowest mean and the control groupN the highest.
Likewise to the future productivity, a Kruskal-Wallis test showed
that the difference among hint types is not significant (𝜒2 (3) =

1.315, 𝑝 = 0.73) and thus we accept the null hypothesis 𝐻EFF2
0 .

These results suggest that the three types of hints in our study
have no significant impact on learning retention.

4.3 Emotional response
The descriptive statistics and box-plots for the immediate emotional
response EMO1 are presented in Table 2c and Figure 4c, respec-
tively. A Kruskal-Wallis test confirms a significant difference among
hint types (𝜒2 (3) = 13.5521, 𝑝 < 0.01) and thus we accept the alter-
native hypothesis 𝐻EMO1

1 . The post-hoc Dunn’s test only showed
a strong significant difference among treatment groups L and D
(𝑧 = −3.6006, 𝑝 < 0.01).

The descriptive statistics and box-plots for the future emotional
response EMO2 are presented in Table 2f and Figure 4f, respectively.
We note that one student in group D did not submit the PrEmo
2 survey in the 2nd session, so this analysis considers only 19
subjects in that group. Unlike for the immediate emotional response,
a Kruskal-Wallis test showed that in this case the difference among
hint types is not significant (𝜒2 (3) = 3.3295, 𝑝 = 0.34) and thus we
accept the null hypothesis 𝐻EMO2

0 .
This suggests that there is significant impact on the emotional

response while learning with different types of hints, but it becomes
insignificant once students start to solve future tasks without hints.

5 THREATS TO VALIDITY
Construct validity. To avoid mono-operation bias, we used two

distinct domain models to define the tasks in our experiment. Our
experiment may suffer from mono-method bias since each opera-
tional variable was defined in terms of a single measure. Concerning
performance, measuring productivity with the number of accom-
plished tasks is common in user studies assessing the impact of
hints. Some studies measure efficacy as the time to accomplish the
tasks rather than using some metric involving the number of at-
tempts. We chose the latter because we wanted to identify whether
certain hint types were more prone to hint abuse, which would not
be detected bymeasuring the time. Future performance in post-tests
without hints has also been used in previous studies to measure
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Statistic N L E D
Mean 5.67 9.12 5.42 4.75
Std. Err. 0.57 0.38 0.57 0.54
Std. Dev. 2.63 1.90 2.50 2.43
Median 6 9 5 4.5
Min 2 3 0 0
Max 11 12 11 9
Skewness 0.27 -1.46 0.11 -0.12
Kurtosis -1.00 2.59 0.05 -0.92

(a) Statistics for PROD1

Statistic N L E D
Mean 0.15 0.28 0.15 0.11
Std. Err. 0.03 0.03 0.03 0.02
Std. Dev. 0.15 0.13 0.14 0.10
Median 0.12 0.27 0.10 0.08
Min 0.02 0.09 0.00 0.00
Max 0.73 0.67 0.53 0.38
Skewness 2.51 0.89 1.51 1.29
Kurtosis 7.08 1.47 1.20 0.96

(b) Statistics for EFF1

Statistic N L E D
Mean -1.62 1.36 -1.32 -3.70
Std. Err. 1.13 0.86 1.03 0.85
Std. Dev. 5.17 4.32 4.50 3.81
Median -2 1 -1 -3
Min -9 -7 -10 -11
Max 11 10 6 1
Skewness 0.49 0.14 -0.25 -0.58
Kurtosis -0.29 -0.52 -0.90 -0.99

(c) Statistics for EMO1

Statistic N L E D
Mean 5.95 4.84 5.89 4.95
Std. Err. 0.77 0.52 0.72 0.69
Std. Dev. 3.53 2.61 3.14 3.10
Median 5 5 5 5.5
Min 0 0 2 0
Max 12 11 12 11
Skewness 0.20 0.17 0.65 0.09
Kurtosis -1.21 -0.37 -1.03 -1.25

(d) Statistics for PROD2

Statistic N L E D
Mean 0.21 0.13 0.15 0.15
Std. Err. 0.04 0.03 0.03 0.03
Std. Dev. 0.20 0.13 0.14 0.14
Median 0.11 0.90 0.11 0.11
Min 0.00 0.00 0.03 0.00
Max 0.67 0.47 0.50 0.44
Skewness 0.92 1.47 1.22 0.62
Kurtosis -0.63 1.36 0.36 -1.04

(e) Statistics for EFF2

Statistic N L E D
Mean 0.86 -0.96 0.47 -0.79
Std. Err. 1.08 0.58 0.80 1.03
Std. Dev. 4.96 2.92 3.50 4.50
Median 1 -1 0 0
Min -9 -8 -8 -10
Max 12 4 5 9
Skewness 0.05 -0.45 -0.43 -0.12
Kurtosis -0.15 -0.40 -0.48 0.02

(f) Statistics for EMO2

Table 2: Descriptive statistics for each operational variable
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Figure 4: Box-plots for each operational variable
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learning retention. Although the used emotional response survey
is standard, the aggregation of the emotions in a single metric is
not standard in the literature but allowed us to perform a ballpark
analysis of the emotional response. We checked if the results were
identical with a more detailed analysis per emotion, and indeed for
the immediate emotional response there was a significant difference
for 5 of the emotions, while for future emotional response there
was no significant difference for any of the emotions.

Internal validity. The participants performance may have been
influenced by factors such as the clarity of the Alloy sheet, the for-
mulation of the requirements in natural language, and the quality
of the curated hints. Some of the authors of this work have been
teaching Alloy for several years, and some of these exercises have in
fact been developed for classes and refined over the years. Addition-
ally, we also performed a very small pilot study with 2 researchers
without Alloy background to further identify any possible issue.

Obviously, prior knowledge of Alloy could have had an impact
on the results. To guarantee that all participants had the same Alloy
background, we asked about prior Alloy knowledge in the demo-
graphic questionnaire and excluded from the analysis the partici-
pants that reported so. To avoid having the participants searching
for external help during the experiment, proctors were assigned to
all classrooms while the experiments were taking place.

As already stated, we had some instrumentation issues in the
1st session regarding the feedback of some tasks of the E group, all
from the 2nd domain model. To check if this could have biased our
analysis, we repeated the inferential statistics for the immediate
performance taking into consideration only the 6 task relative to
the 1st domain model, and all the conclusions were identical. We
also computed the descriptive statistics separately for both domain
models, and actually group E had a slight increase in productivity
and efficacy in the tasks of the 2nd domain model, thus seeming to
be unaffected by the error. It is worth noting that there was a slight
decrease in the productivity for all the other groups.

Alloy4Fun is an academic tool and has not been properly vali-
dated for UX, which could in principle have affected the impact of
hints. To check whether this was a factor, we assessed the results
of the UMUX questionnaire, which produces an overall usability
metric ranging from 0 to 100.While the overall values demonstrated
only marginal usability (for the 1st session we have M = 53.4, SD
= 19.4, and for the 2nd session we have M = 50.9, SD = 17.6, with
non-acceptability being below 50 according to [41]), the difference
in usability between the hint types was not statistically significant.

External validity. It is possible that the results of learning Al-
loy cannot be generalised to other formal specification languages.
However, we have focused on a very small subset of operators that
is common to most specification languages. The only operator that
may not be standard in other languages is the composition that
allows for the navigational style of Alloy. By focusing on a small
subset of the language and fine-grained tasks, by design we are also
not assessing the impact on learning how to use Alloy to specify
full realistic models. To assess that a longitudinal study running
during a full Alloy course would be more appropriate.

As already discussed in Section 3.5, the background of the partic-
ipants is aligned with what is recommended by ACM for standard

CSE curricula, namely concerning the background on logic, dis-
crete maths, and software engineering. As such we believe our
conclusions can be generalised to most students majoring in CSE.

Conclusion validity. Statistical relevance of the results was shown
using non-parametric tests as recommended for non-normal data.

6 DISCUSSION
We found it surprising that counter-examples (group E) and error
descriptions (group D) did not have a positive impact on immediate
performance. This may have due to cognitive overload of interpret-
ing those hints, which may have lead to hint avoidance. Despite
the instrumentation error in group E, the fact that this was the only
group for which productivity increased during that session seems
to corroborate this conjecture that participants may have started
to disregard this type of hints after some tasks. Further evidence is
that only a couple of students reported the error during the session.
While we believe that counter-examples play an essential role in the
validation of formal models, it is possible that their interpretation
requires some training and thus they are not suitable for students
in their first interactions with the language.

On the open-ended question in the 1st session questionnaire,
participants expressed some thoughts about the provided hints.
Some these are inline with the above analysis. In group D, students
tended to find the help lacking, with comments such as “needs to be
more explicit” or “information is not specific enough”. In group E,
responses were divided between finding it confusing and helpful. A
student mentioned that it “helped me understand what I did wrong
with the errors”, and another stated that “At first, I didn’t find it
very clear, but over time, with practice, I understood it better”.

Despite some initial concerns, it seems that hints with precise
error locations (group L) are beneficial. Immediate performance is
better without a negative impact in learning retention, so students
acquire the same knowledge more efficiently. It is worth noting
that no indication exists that participants in this group have brute-
forced solutions, since their efficacy is higher than the other groups.
Moreover, the emotional response was more positive while per-
forming tasks with these hints, while a deprivation effect did not
occur after their withdrawal in the 2nd session. In the open-ended
question, L group students found the help useful and satisfactory,
with comments like “The system’s provided help that greatly as-
sisted in quickly completing the tasks” or “I think the tips provided
by the system were essential in helping to solve the problem, and
without them, the solution would have been quite complicated”.

Our results showed that only group L had a positive aggregated
emotional response in the 1st session and that in the 2nd session
there were no significant differences between the groups. As already
reported, we also did a more detailed analysis per emotion, namely
taking into consideration the difference between the self-reported
Likert level after and before both sessions. The mean and standard
error (the whiskers) of that variation are depicted in Figure 5. In
the 1st session, and averaging all the groups there was a nega-
tive variation in all emotions with the exception of Boredom. The
stronger decrease occurred in Fascination, Anger, Hope, and Joy.
The Kruskal-Wallis test confirmed a significant difference between
the groups for the following emotions: Desire, Fascination, Joy,
Contempt, Shame, and Disgust. Looking at Figure 5 it seems that
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Figure 5: Emotional response after the 1st (top) and 2nd (bottom) sessions

the hints in groupD triggered the worst emotional response. A post-
hoc analysis confirms that indeed the most significant difference is
almost always between this group and group L.

With the exception of group L, the emotional response in the
2nd session improved for almost all of the different emotions, with
an increase in the positive emotions (in blue) and a decrease in
the negative ones (in red). This perhaps reflects some habituation
with the language and the Alloy4Fun framework. Averaging all the
groups, the stronger improvements were in Fascination, Desire, Joy,
and Satisfaction, all emotions with a positive valence. In general,
the best emotional response in this session was for group N. Even
though there was an (expected) strong decrease in the emotional
response of group L in the 2nd session – possibly caused by the
withdrawal of hints – the effect was not sufficient to make the
experience more frustrating than that of the other groups.

The open-ended question can shed some light on the emotional
quantitative results. In all groups but L there were negative com-
ments about the experience in the 1st session. In groupN there were
positive emotional responses (“I managed to answer the majority
of the challenges correctly” or simply “I enjoyed the experience”),
but also negative (“The system left me somewhat hesitant about
the provided help”); in group E, students mentioned annoyance (“I
was annoyed while doing this study”) and frustration; and in group
D, comments highlighted disappointment (“I am disappointed with
my results in this test”), time pressure for responses, but also a
decrease in boredom (“I am less bored than a moment ago”). In
group L only one student mentioned feelings (“I felt frustrated not
being able to finish some of the questions”). In general, responses
in the 2nd session are also inline with the quantitative results. In
group N only one student reported feeling frustrated and in D com-
ments backed the improved response (“I feel that this week I learned
more than last week, which makes me feel less frustrated” and “I
am curious about the system”). In group E, despite the improved
emotional response, participants still reported “It was a frustrating
experience” or “I feel disappointed for not having done better”. In
group L comments were more mixed than in the 1st session, with

a duality between “I managed to complete most of the challenges”
and “I couldn’t solve some of the exercises, so I’m disappointed and
frustrated that I had to wait to move on to the next challenge”.

7 CONCLUSION
This paper presented a study on the impact of different types of
hints when learning a new formal specification language. As far
as we know, it is the first such study focusing on learning formal
specification rather than learning programming. The replication
package for the experiment is publicly available [26]. The results
showed that only hints highlighting error locations have a signif-
icant impact on immediate performance and emotional response,
and none of the studied hints had a positive (or negative) impact
on future performance (learning retention) and future emotional
response. From this we can conclude that hints with precise error
locations seem to be beneficial for the students, making the learning
experience more pleasant and effective without apparent future
negative effects. Our study focused on participants with no Alloy
background and on fine-grained tasks, and some types of hints,
namely counter-examples, may require a bit more experience to be
useful. Further studies are required to assess the impact of hints
over the full duration of a formal specification course, and also to
assess the impact of other types of hints, namely hints combined
with some sort of self-explanation prompts.
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