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Abstract This paper reports on the development and
validation of a formal model for an automotive adaptive
exterior lights system (ELS) with multiple variants in
Alloy 6. Alloy 6 is the most recent version of the Alloy
lightweight formal specification language that supports
mutable relations and temporal logic. We explore differ-
ent strategies to address variability, one in pure Alloy
and another through an annotative language extension.
We then show how Alloy and its Analyzer can be used to
validate systems of this nature, namely by checking that
the reference scenarios are admissible, and to automati-
cally verify whether the established requirements hold.
A prototype was developed to translate the provided
validation sequences into Alloy and back to further au-
tomate the validation process. The resulting ELS model
was validated against the provided validation sequences
and verified for most of requirements for all variants.

Keywords Formal specification - Model checking -
Feature-oriented design

1 Introduction

Alloy [T6] is a lightweight formal specification language
based on relational logic. Its most recent version, Alloy 6
(previously known as Electrum), besides allowing struc-
tural definitions and constraints in first-order relational
logic, also supports mutable relations and (past and
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future) linear temporal logic (LTL) constraints [22]. Its
companion Analyzer [5] provides support for validation —
through scenario animation — and verification — through
two automatic model checking backends, one bounded
and another complete [2T]. Both animation instances and
verification counter-examples are presented back to the
user in a unified graphical interface. The combination of
first-order and temporal logic makes Alloy 6 well-suited
to address systems rich in both structural and dynamic
properties, such as automotive software product lines
with architectural and behavioural variability. To fur-
ther ease the feature-oriented design of software families,
composition- [I] and annotation-based [20] extensions
to previous versions of Alloy have also been proposed.

This paper reports the modelling and subsequent
validation and verification of an adaptive exterior lights
system (ELS) with multiple variants in Alloy 6, carried
out as an answer to the ABZ’20 call for case study
submissions [I5], following our successful submission to
the ABZ’18 case study [§]. The employed approach —
which we hope can be applied to similar signal-based
systems — is presented in Section [2] and the resulting
model described in Section[3] As described in Section[3.2]
we have been able to model most ELS requirements
by finding proper abstractions, in particular for quan-
titative and real-time issues. The Alloy 6 language is
presented throughout this section as needed. Section [3.3
describes two explored approaches to modelling mul-
tiple variants, one in pure Alloy 6 and another using
a language extension for feature-oriented design [20].
The ELS model was validated against all the provided
validation sequences [14], and verified for most of the
ELS requirements, as described in Section[d] To ease val-
idation, a prototype was developed to translate tabular
validation sequences into Alloy 6 and back for inspection
by domain experts. Section [5]| discusses issues identi-
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fied in the requirements and limitations of the followed
approach. Section [6] compares our approach with other
submissions to the case study call, while Section [7]draws
conclusions and wraps up the paper.

The team has extensive background on using, teach-
ing, and performing research on topics related with
lightweight formal methods, and Alloy/Electrum in par-
ticular. The main modelling activities were carried out
by Macedo, double-checked by Cunha. Liu focused on
variability modelling. In Alloy, the design philosophy is
to the model, properties and commands in the same
.als file. The annotative extension follows this philoso-
phy, with an .als file containing multiple variants and
their dependencies. These files (along with .thm files
for theme customization) were synchronized among the
team through a git repositoryﬂ It should also be noted
that the authors had no particular domain knowledge,
and that the process was solely based on the provided
reference material [I3l[14] and discussions with the case
study chair.

This paper extends a conference version [9] by de-
tailing the modelling strategy and the resulting model
(in particular regarding the evolution of the system’s
environment and the abstraction of timing aspects), fur-
ther discussing the limitations of the proposed approach,
and providing a comparison with the other approaches
to proposed to address the ELS case study [3L[I8[19,23]
24] (Section [6]). At the time of the original submission,
Electrum was an independent extension of Alloy, but it
has since been integrated into the official Alloy 6 release.
The text has also been adapted to reflect this fact.

2 Requirements and Modelling strategy

The main goal of this work was to validate the ELS
requirements for all valid variants by exploring possible
designs, thus checking the feasibility and consistency
of the requirements. We started by modelling a single
variant of the ELS as a (loosely specified) state machine
against which the validation sequences were tested and
the requirements subsequently verified. An Alloy model
contains both the system specification and the analy-
sis commands, thus our model, described in detail in
Section |3.2] is structured as follows:

Environment the available input and output signals,
their acceptable values, and possible restrictions to
their behaviour [I3, §4.1-4.3]. Traceability to the
reference document is kept via the naming of each
signature associated with a signal.

L All resources relevant for the ELS case study are available at
https://github.com/haslab/Electrum2/wiki/ELS|

ELS state machine a predicate calculating the state
of output signals (mostly) from the current state
of the input ones, allowing alternative behaviours;
it has been inferred from the reference material,
particularly from the requirements [13] §4.4].

Animation scenarios simple state sequences, and as-
sociated run commands, that exercise the ELS for
preliminary validation and regression testing.

Reference scenarios the encoding of the provided val-
idation sequences [I4], and associated run commands,
with imposed inputs and expected outputs, for vali-
dating the modelled ELS state machine. A prototype
was developed to translate sequences from the pro-
vided tabular format [I4] into the model. Traceability
to the reference document is kept via the naming
of each predicate/run command associated with a
validation sequence.

Visual elements elements ignored by the analyses but
aiding the visualization of scenarios (accompanied
by a theme, which is stored in a separate file).

Requirement assertions the formalization of the re-
quirements [13, §4.4] in temporal logic, and associ-
ated check commands to automatically verify them.
These assess whether the expected requirements hold
for the design ELS. Traceability to the reference doc-
ument is kept via the naming of each assertion/check
command associated with a requirement.

Once a single variant was modelled and validated,
we tackled the variability of the ELS. The first step was
to introduce an additional model element:

Feature model introduces the available features and
restricts valid configurations, as stated in the refer-
ence document [I3] §3]. Traceability to the reference
document is documented as comments in the decla-
ration of the feature model.

The ELS has both structural — that introduce additional
signals — and behavioural — that change certain signal
outcomes — variability points that depend on the se-
lected features. The Alloy 6 language is flexible enough
to support such alternative requirements, and all the
model elements described above were adapted to support
variability.

We explored and compared two distinct strategies
to encode the feature model and the variability points,
which are detailed in Section [3.3

— an approach based on an Alloy 6 idiom, where fea-
tures are introduced as optional Alloy elements and
variability points as conditionals over their presence,
a strategy known as configuration lifting [25] or vari-
ability encoding [2];

— an annotation-based approach to feature-oriented
design through an extension developed by us for Alloy
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5 [20], that we believe is suited for the Alloy level of
abstraction where variability points are fine-grained
(in contrast to composition-based approaches [17],
that require each feature to be developed in a distinct
module).

As expected, the development of these components
was not sequential but rather iterative as new ELS func-
tions were added to the model. This process was applied
to all 9 main ELS functions divided in 48 requirements
as of version 1.17 [I3], for all 12 valid variants (although
only 4 effectively have distinct behaviour) and to all
9 validation sequences of version 1.7 [I4]. This work
focused on the ELS, but we believe a similar approach
could be followed for the speed control system (SCS) [13],
although the SCS is richer in continuous aspects, which
would require additional abstractions.

The features of the ELS most challenging to model
in Alloy were those dealing with real-time aspects and
the integer nature of the signals. Two main abstractions
were introduced in our model to address these two is-
sues, respectively arbitrary duration events and value
discretization, described in the next section. This still
allowed us to address most requirements. Only require-
ments effectively requiring arithmetic operations were
not addressed at all.

3 Model details
3.1 Alloy in a Nutshell

In Alloy 6, likewise previous versions, structure is intro-
duced through the declaration of signatures (keyword
sig) — sets of uninterpreted atoms — and fields declared
within them — relations of arbitrary arity between signa-
tures. A hierarchy on signatures can be imposed through
simple inclusion (in) or through extension (extends), in
which case children must be disjoint; signatures can also
be declared as abstract, meaning all atoms must belong
to its children. Signatures and fields can be restricted
by simple multiplicity constraints, such as some (there
is at least some element), lone (there is at most one
element), or one (there is exactly one element). Lastly,
both may be static (by default) or declared as mutable
(var), in which case their state may change over time.
Alloy constraints are based on temporal relational
logic, an extension of first-order logic with transitive
closure and past and future linear temporal logic op-
erators. Relational expressions combine signatures and
fields (and constants, namely the universe of atoms univ,
the unary empty relation none and the identity relation
iden) with typical set theory operators such as union (+),
intersection (&), difference (-), Cartesian product (—),

binary relation overriding (++), and relational join (.).
To simplify syntax and semantics, in Alloy everything is
seen as a relation: signatures are sets (unary relations),
while scalars and quantified variables are singleton sets.
So besides being used to compose relations, the join
operator also subsumes relation application. Primed
expressions can be used to refer to their value in the
succeeding state.

Atomic formulas either test relational expressions for
inclusion (in) or equality (=), or are simple multiplicity
tests. Complex formulas are composed by Boolean opera-
tors (e.g. not, and, or, iff, implies or implies-then-else),
first-order operators (e.g. all or some), and future (unary
after, always or eventually, or binary until or releases)
and past (unary before, historically or once, or binary
since or triggered) linear temporal logic operators.

An additional restriction over the model is imposed
through a fact. These represent model axioms, which
can contain arbitrary temporal relational formulas. In
contrast, a property that is expected to hold in the
model as a consequence of the imposed facts is defined
as an assert. Predicates (pred) and functions (fun) can
be defined for auxiliary formulas and expressions, re-
spectively, and let-expressions for local definitions.

Lastly, an Alloy model can contain commands to
be executed by the Analyzer. Animation instructions
to generate model instances are defined through run
commands, which can be provided arbitrary constraints
that must hold for the generated instances. Instructions
to be verify assertions are given as check commands.
These commands always consider a bounded universe,
which are controlled by assigning scopes (keyword for)
to the declared signatures.

3.2 The ELS Model

This section describes the main features of the model
developed for the simplest ELS variant, that is, when
the vehicle is not armoured and is aimed at the EU
market (the other feature, the driver position, does not
affect the ELS behaviour).

System environment  The ELS follows a typical ar-
chitecture that communicates with the external world
through input — from the user interface and sensors —
and output signals — to actuators. Our model mimics
this architecture so that the translation into Alloy can
be streamlined.

The ELS environment model declares signals, the
values that can be assigned to such signals, and how
these assignments are represented in time. Signals form
a static hierarchy starting from an (abstract) Signal
signature. Although the ELS signals are simply integers
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Fig. 1: Meta-model of the system environment model for low beam headlights.

without any additional structure, grouping together re-
lated signals in a common signature eases modelling
and comprehension. Thus, for instance, all light signals
are aggregated in an abstract signature Light, and left
and right low beam signals in the abstract signature
LowBeam. At the bottom of the hierarchy are the concrete
signals themselves as singleton signatures (multiplic-
ity one), such as LowBeamRight and LowBeamLeft, whose
names match those specified in the reference documents.
The hierarchy relevant for the low beams function is
encoded in Alloy as:

abstract sig Light extends Signal {
var state : one LightState }
abstract sig Beam, . extends Light {}
abstract sig LowBeam, TaillLamp
extends Beam {}
one sig LowBeamLeft,
extends LowBeam {}
one sig TaillLampLeft, TaillLampRight
extends TaillLamp {}

LowBeamRight

where field state will be explained shortly. To simplify
the modelling process, we distinguish Boolean signals
(BooleanSignal, a sub-signature of Signal) from the oth-
ers. Boolean signals relevant for the low beams function
are declared as:

abstract sig BooleanSignal extends Signal {}
one sig AmbientLighting, DaytimeLights
extends BooleanSignal {}

Although signal values are integer numbers, most
requirements simply test whether they are within cer-
tain ranges. Thus, to keep the model manageable and
avoid state explosion, we discretize the values of each
signal into those ranges relevant for the requirements.
For instance, it is only relevant to detect whether the
ambient brightness levels are below 200, over 300 or
between the two, while low beam headlights are only

set to 20%, 50% or 100% intensity |13}, §4.4]. Thus only
these distinct classes of values are encoded in our model.
Values form a hierarchy matching that of the signals,
topped by State, whose direct children group the states
of related signals, such as LightState for Light signals.
The next layer provides the discretized values, such as
0ff, Low, Half or Full for beam intensity. Lastly, since
our model abstracts real-time aspects, occasionally we
require additional temporal context regarding the state
of the signals (this process is detailed shortly when
presenting the state machine). For instance, when low
beams are activated due to ambient darkness, they must
remain active for 3s even if ambient brightness is de-
tected (ELS-18); thus, within Full beam intensity we
distinguish between this temporary state (Temp) and per-
manent activation (0n). Part of this hierarchy relevant
for the low beam function is encoded as:

abstract sig LightState extends State {}

abstract sig Full, Off extends LightState {}

one sig Half, Low extends LightState {}

one sig On, Temp, . extends Full {}
one sig OffP, . extends Off {}

Lastly, we model the evolution of the state of the
signals. For Boolean signals a mutable sub-signature
Signalon will contain at each state all active signals:

var sig SignalOn in BooleanSignal {}

So, if s is a single Boolean signal, s in SignalOn tests
whether s is currently active. For the other signals, a
mutable field called state will contain at each state
exactly one respective value, such as the one declared
above for Light pointing to a LightStateEl Expression

2 To simplify the model, we could push the state fields to an
abstract signature which all signatures with mutable state would
extend. However, this would have a heavy toll on performance
of the Alloy solving procedures, since such state would have the
general type State even for concrete signals.
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s.state can be used to retrieve the current state of a
concrete signal s or all the states of a set of signals s.
If v is some single value, s.state in v tests whether all
signals in s currently have value v. A primed expression
s.state’ retrieves the next value of s.state.

We have encoded the over 30 signals of the ELS in
this manner, including those of the user interface [13]
§4.1], the sensors [I3, §4.2] and the actuators [13] §4.3].
The Alloy meta-model of the environment signature hi-
erarchy for the low beam headlights function is depicted
in Fig. [l as generated by the Analyzer. Signals are rep-
resented as grey hexagons and signal states as yellow
boxes; singleton signatures, the leaves of the hierarchy,
are depicted in thicker lines. Mutable elements are drawn
with dashed lines, namely the (blue) subset of active
signals and the state assigned to each signaﬂ Instances
of the Alloy model will follow a similar style, albeit with
additional customizations. Throughout the rest of the
paper we will mostly rely on this function, the low beam
headlights, to demonstrate the features of the developed
models.

Often, there are some assumptions on the evolution
of the system’s environment, which can be controlled
through facts. In the ELS model, a fact forces the pit-
man arm (PitmanArmUpDown.signal) to go back to neutral
when the steering wheel (SteeringAngle.signal) returns
to the vertical position from another state [I3] §4.1]:

fact Environment { always (
(PitmanArmUpDown.state in Downward7+Upward7 and
SteeringAngle.state in Left+Right and

SteeringAngle.state’ in Middle) implies
PitmanArmUpDown.state’ in UpDownNeutral) }

State machine Next we derived a state machine from
the ELS requirements. A predicate is defined to en-
code the behaviour of each function, which are sub-
sequently called in a fact that enforces the full state
machine. For the low beam headlights function, this
predicate mostly restricts the succeeding state of the
low beam headlights signals given the current state of
the other signals. For instance, if the light rotary switch
(LightRotarySwitch.state) is set to LSOn while the key
(KeyState.state) is in the ignition on position, the suc-
ceeding state of the low beams is set to on (ELS-14):
(KeyState.state in KeyOnPosition and

LightRotarySwitch.state in LSOn) implies
LowBeam.state’ in On

Expression LowBeam.state aggregates the state of both
the left and right low beams; since every light must have
a state assigned, LowBeam.state in On sets both beams

3 Some state names are abbreviated in the paper to ease
presentation but are consistent with the reference document
in the full model, such as KeyOnPosition rather than as
KeyInIgnitionOnPosition.

to full intensity. As a more complex example, consider
ELS-17 that specifies daytime running lights, which
states the low beams are activated when the engine is
started and remain so until the key is removed from
ignition, unless ambient light control is also active:
(DaytimelLights in SignalOn and

(KeyState.state in KeyOnPosition or

(LowBeam.state in On and

KeyState.state in KeyInserted and

AmbientLighting not in SignalOn))) implies
LowBeam.state’ in On

This formula forces the state of the low beams to be
On in the next state if DaytimelLights is active and, ei-
ther the engine is started (KeyOnPosition), or the key is
in the ignition (KeyInserted) and the low beams were
already On (as long as AmbientLighting is not active, a
case handled instead by ELS-19).

In our model, real-time is abstracted away and no
particular duration is imposed to states. So, an ELS
event with a bounded duration — such as low beam head-
lights always remaining active for at least 3s (ELS-18) —
may take an arbitrary number of steps to terminate in
our model. The allows the exploration of simultaneously
occurring events with alternative interleavings. To that
purpose, the model’s state registers when events with a
bounded duration are executing, and at each state they
are either allowed to continue executing or terminate;
an additional constraint forces them to inevitably termi-
nate at some point. For instance, the mandatory 3s for
automatic low beams (ELS-18) is identified by the head-
light state Temp; when brightness is detected, the low
beams may be turned 0ff or the Temp state propagated
to model the possible delay to complete the 3s. This
could be encoded in the following relational formula:

let low = LowBeam.state |
(LightRotarySwitch.state in LRSAuto and
KeyState.state in KeyOnPosition) implies
one low’ and
BrightnessSensor.state in Dark implies
low’ in low. (univ—Temp+Temp—0On++0On—0n) else
BrightnessSensor.state in Bright implies
low’ in low. (univ—O0ff+Temp—Temp) else
(BrightnessSensor.state in Grey and

low not in Temp) implies
low’ in low. (iden+Temp—O0n)

Here low abbreviates the state of both left and right low
beam headlights and we rely on relational expressions to
specify alternative updates. For instance, binary expres-
sion univ—0ff+Temp—Temp relates every state value with
0ff (univ—0ff) and additionally state value Temp with
itself (Temp—Temp); thus, low. (univ—0ff+Temp—Temp) re-
turns Temp and 0ff when the current state is Temp and
only 0ff otherwise. As mentioned above, this allows
events to last an arbitrary number of states, which are
not given any real-time interpretation: whenever low
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beams have state value Temp, either the 3s have not
elapsed and the low beams remain active (Temp is se-
lected again), or the 3s have been exceeded and the
low beams are deactivated (0ff is selected instead). For-
mula one low’ guarantees that left and right beams are
updated consistently (i.e., with the same state value).
Liveness properties then guarantee that the system even-
tually evolves, since in Alloy 6 arbitrary temporal con-
straints can be imposed. For ELS-18 this formula takes
the following shape, forbidding the low beams to stay
in state Temp indefinitely (i.e., the 3s eventually elapse):

low in Temp implies eventually low not in Temp

The strategy described throughout this section was
employed to model all the ELS main functions — direc-
tion blinking, hazard warning light, low beams, corner-
ing lights, manual and adaptive high beams, emergency
brake and reverse lights, and fault handling.

3.3 Handling Variability

The ELS has variability points, namely the market re-
gion, whether it is an armoured vehicle and the driver
position (although this last one does not affect the be-
haviour of the ELS) [I3], §3]. The model described in
the previous section represented a single ELS variant,
and multiple independent models could be developed
in such a way for each of the valid variants. However,
such a strategy has poor maintainability and will not
scale as the number of features increase. Alloy 6 is suffi-
ciently flexible to support systems with structural and
behavioural variability points and effectively model fam-
ilies of software products. However, such idioms may be
cumbersome, error-prone, and reduce comprehension,
so to explore alternative approaches we previously im-
plemented in Alloy an annotative language extension to
natively support feature-oriented design. This extension
was developed for Alloy 5 but its adaptation to Alloy 6
to model the ELS was straightforward. This section de-
scribes the design of the ELS family of products in both
approaches, which allow simultaneously specifying and
analysing all the 12 ELS variants. For both approaches,
we assume the variant presented in the previous sec-
tion to be the base variant, which is extended into a
multi-variant model.

A pure Alloy 6 idiom The first step in both approaches
is to encode the feature model — the possible features
and the constraints over them, representing the set of
valid variants. When relying on a variability idiom, this
is done by making features first-class elements of the
model over which the presence conditions can be tested
(a strategy known in the community as configuration

lifting [25] or variability encoding [2]). So, in a pure Alloy
idiom, we can create a signature (here, Feature) with an
atom for each available feature (through singleton sub-
signatures, such as EU or ArmoredVehicle for the ELS).
A sub-signature then contains a particular selection of
these features, representing the variant under analysis
(here, Variant as a sub-set of Feature). Lastly, a fact
restricts which variants are considered valid, in the case
of the ELS forcing a single market to be selected through
a multiplicity test:

fact FeatureModel {
one (EU+USA+Canada) & Variant }

To model architectural variability, conditional signa-
tures and fields can be assigned a loose multiplicity that
is restricted depending on the variant under analysis.
In the ELS the darkness mode switch only exists on
armoured vehicles, so its multiplicity is set to lone (at
most one such signal exists), and then a fact forces its
existence exactly when the respective feature is selected:

fact darknessModeSwitchOn {
some DarknessModeSwitchOn iff
ArmoredVehicle in Variant }

Behavioural variability can be modelled by testing which
features are selected in Variant and adapting the relevant
transitions of the state machine predicates. In the case
of low beams, for instance, ambient lights should be
ignored with active darkness mode in armoured vehicles
(ELS-21), so the pre-condition for activating them when
the engine is started (ELS-19) is adapted to:

not (ArmoredVehicle in Variant and
DarknessModeSwitchOn in SignalOn) and

AmbientLighting in SignalOn and

BrightnessSensor.state in Dark and

before KeyState.state in KeyOnPosition and

KeyState.state not in KeyOnPosition implies
LowBeam.state’ in Temp

Notice that since features are regular signatures, it may
become difficult to identify which parts of the predi-
cate are variability points. It may also lead to unpre-
dictable issues if the architectural variability is not han-
dled with care: the distracted developer could simply
write DarknessModeSwitchOn in SignalOn to test whether
darkness mode is active without testing the feature
presence condition, but since DarknessModeSwitchOn is
empty in variants without feature Armoredvehicle, the
test would be trivially true and permanently disable
ambient lighting.

For an example regarding the USA and Canada
market variants, during direction blinking the intensity
of daytime running lights (ELS-17) must be reduced
to half in the respective side (ELS-6), so the transition
shown in the previous section would be adapted to:
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DaytimeLights in SignalOn and ...
LowBeamLeft.state’ in
(some (USA+Canada) & Variant and
BlinkLeft.state’ not in OffP)
implies Half else On and
LowBeamRight.state’ in
(some (USA+Canada) & Variant and
BlinkRight.state’ not in OffP)
implies Half else On

implies

where the state of the blinking lights BlinkLeft and
BlinkRight is tested in case the USA or Canada markets
are selected.

A colourful Alloy 6 extension  Approaches to explic-
itly introduce variability in a system usually fall in
two categories: compositional approaches where features
are implemented as distinct code units which are then
composed when creating a variant, and annotative ap-
proaches where the code is annotated to dictate which
fragments will appear in each variant. Both composi-
tional [I] and annotative [20] approaches have been
proposed to enable feature-oriented design in Alloy, the
latter by us relying on colourful annotations that have
been shown to improve understandability [IT]. Annota-
tive approaches are better suited for small granularity
variability points, which in our experience in modelling
systems in Alloy is often the case at the Alloy level of ab-
straction. Such is the case in the examples above where
one needs to change part of a formula or expression,
rather than replace the predicate altogether, as would
be the case in compositional approaches. In this section
we attempt to model the multiple variants of ELS with
this lightweight annotative approach. For more details
and the formal semantics, the reader is redirected to [20].
Model elements can be marked with features, identi-
fied by a digit, to control their presence/absence without
obfuscating the code. Positive and negative annotations
are introduced, respectively, by delimiters ® and @ for
1 <4 <9, and colour highlighted by the Analyzer. These
can be nested, representing the conjunction of pres-
ence conditions, and be applied to most declarations
or branches of certain operators (namely conjunction,
disjunction, intersection and union). Semantically, when
the presence conditions are not met the element is inter-
preted as the neutral element of the respective operator.
For instance, in @p® and @q@, p is only tested in variants
with feature @, and g in those without feature @, being
replaced by true otherwise, since they occur in a con-
junction (and). During analysis, annotated expressions
are expanded into plain Alloy by the colorful Analyzer to
a style similar to the one presented above, introducing
also signatures to model the feature model under the
hood. As a consequence, performance of the analyses is
expected to be similar in these two approaches.

The multi-variant ELS model under this extension
uses five feature annotations, one for each variability
point. To model the feature model one can rely on anno-
tated facts to forbid certain variants. For the ELS this
could be achieved by the following fact, which mimics
the colour highlighting of the Analyzer:

fact FeatureModel {

// USA, Canada, EU

// Armored, DriverPosition
false and false
false and falce }

where, for instance, formula @®@false@® forbids the
coexistence of USA and Canada market codes, and
00O alsc®@OO forces the selection of at least one mar-
ket codd’] At the level of abstraction of Alloy, feature
models are usually small and simple to encode with facts
like the one above, but we are studying whether dedi-
cated support for encoding feature models is necessary.

Architectural variability is trivially modelled, as one
may mark the signature (or field) declaration with the
relevant annotations, as in the case of the darkness mode
switch signal,that only exists for armoured vehicles:

one sig DarknessModeSwitchOn

extends BooleanSignal {}

One type rule imposed by colourful Alloy is that
element calls must respect the annotations in which they
were declared, thus guaranteeing that they are never
called in variants where the element is absent. Thus, the
interaction between ELS-19 and ELS-21 would now be
encoded as:

not DarknessModeSwitchOn in SignalOn() and
AmbientLighting in SignalOn and
BrightnessSensor.state in Dark and
. implies
LowBeam.state’ in Temp
In variants without feature @ this test will be disre-
garded (i.e., interpreted as true). The same mechanism
can be applied to relational expressions. For instance, the
interaction of ELS-17 and ELS-6 for USA and Canada
markets is encoded as:

LowBeamLeft.state’ in
on2)+
Blinkleft state’ not in OFffD imnliec
Half elece 0On@ and
LowBeamRight.state’ in
on(3)+

RT1inkDinht ctata’ nat
SLinAnRignt.State HToas

in NffD imnliac
N vr s ANpLatC

Half aleca Nn
where the low beams are always set to On in the EU
market, but in other markets (through the negative @)
the state of blinking lights is tested. A branch of a union
expression is interpreted as the empty relation when the
presence conditions do not hold.

4 Alloy does not natively support Boolean expressions by design
choice, so here false is a user-defined predicate with a trivially
unsatisfiable formula, such as some none.
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4 Validation & Verification

The Alloy Analyzer is able to execute animation and verifi-
cation commands. Both instances and counter-examples
are graphically depicted in a visualizer that can be
customized for improved interpretation. This section
describes how these functionalities were used to validate
and verify the ELS model.

4.1 Animation and Validation
Validation scenarios Animation commands allow the
quick definition of scenarios for early validation, which
are also useful as regression tests as the model evolves.
For the ELS we have defined over 60 such scenarios
exercising simple behaviours of the system. We follow
an idiom where one predicate defines the evolution of
the environment (state of input signals) and another
the expected behaviour of the system (state of output
signals). For instance, to test basic low beam headlights
sub-functions such as having the light rotary switch set
to on with key inserted, a predicate is defined to encode
the behaviour of the relevant input signals:
pred LowBeam2Env {
always AmbientLighting not in SignalOn
always KeyState.state in KeyInserted

let lrs = LightRotarySwitch.state |
1rs in LSOff;always lrs in LSOn }

where always p forces p to hold in all states of the trace
and p;q abbreviates p and after g, an operator intro-
duced precisely to ease scenario specification [8]. A pred-
icate then encodes the expected outcome of the ELS for
these inputs:

pred LowBeam2Exp {

LowBeam.state in OffP;
always LowBeam.state in Half }

This predicate states that the beams should be activated
with intensity reduced to half. Lastly, a command to
generate this scenario by enforcing the environment and
the expected behaviour (in the succeeding state, since
output signals are calculated from the previous state) is
defined:

run LowBeam2 {
LowBeam2Env and after LowBeam2Exp }
for 5 steps

Commands must have scopes assigned to signatures,
but in our ELS model all signatures are exactly bound,
since all signals and possible states are known a priori.
For bounded model checking — more efficient and thus
better suited for validation — the maximum number of
states that form a trace must also be provided (the scope
of steps). Since this is a simple scenario, 5 states are

sufficient to represent it. Once instances are generated,
the user is able to iterate over alternative scenarios
for which the constraints hold. Scenario exploration
operations (see the toolbar of Fig. include ‘Next
Config’ to change the configuration of the trace (here,
the selected variant), ‘Next Init’ to change initial state
if the trace, or ‘Fork’ to change the currently focused
transition [6].

In the multi-variant ELS models one is able to re-
strict which subset of variants should be analysed. As
an example, let us consider the animation of the effect of
darkness mode when ambient lighting is activated. In the
pure Alloy variability idiom the part of this environment
predicate could be specified as:

ArmoredVehicle in Variant

let key = KeyState.state |

key in KeyOnPosition;always key in KeyInserted
always AmbientLighting in SignalOn

always DarknessModeSwitchOn in SignalOn

which includes the selection of the feature Armoredvehicle
and the behaviour of the DarknessModeSwitchOn. The
same scenario in the colourful extension would instead
be specified as:

let key = KeyState.state |
key in KeyOnPosition;always key in KeyInserted
always AmbientLighting in SignalOn

always DarknessModeSwitchOn in SignalOn

where the behaviour of the darkness mode switch is
annotated with the corresponding feature. The execution
of this scenario must then also be restricted to only
variants where feature @ is selected. In colourful Alloy
this is defined through the command scope as:

run LowBeaml9 {
LowBeaml9Env and after LowBeaml9Exp }
with for 5 steps

Theme customizations The proper graphical representa-
tion of instances is key to promote the interpretation of
the model among interested parties. The Alloy Analyzer
depicts instances as graphs, applying a graph represen-
tation algorithm and distributing nodes among layers,
obliviously of the underlying semantics of the nodes and
edges. Themes may be defined to ease interpretation.
From our past experience the most useful customiza-
tions are simply changing the colour, shape or label of
elements, hiding elements, showing relations as edges
or attributes, and inverting edges (the easiest way to
change the shape of the graph). Visualization can also
be projected over a signature, focusing the visualization
on the elements related to the selected atom. These
customizations are hierarchical, meaning that subsets
of elements may inherit the parameters of their parents
or change them. Although simple, these features can
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Fig. 2: A step of sequence 1 in the Analyzer under the developed theme.

become extremely powerful given another key function-
ality of the visualizer — after analysis, and during the
creation of the graph, auxiliary functions defined in the
model are introduced into the instance. These can be of
arbitrary arity, and thus can represent subsets of atoms
or new relations between them.

In our ELS model we have used such features to
produce a visualization such as that of Fig. [2] Since
the signals are not structured, we introduce additional
elements to layout signals according to their role in the
system. Singleton signatures — which do not affect the
solving process since they are exactly bound and not
referred elsewhere — simulate the vehicle architecture,
such as the Car itself or the driver’s Menu (white boxes
in Fig. :

one sig Car, LeftSide, RightSide, Menu, UCP {}

Auxiliary relations (defined as functions with zero ar-
guments) then connect such elements to signals, such
as assigning the sensors to the car (which are set to
be shown as attributes of Car rather than edges) or
the lights to the respective side of the car, and can be
defined as follows:

fun _lightsensor : Car — BrightnessSensorState {

Car — BrightnessSensor.state }
fun _actuators : univ — univ {

LeftSide — (BlinkLeft+LowBeamLeft+...) +
RightSide — (BlinkRight+LowBeamRight+...) }

Auxiliary sets (unary relations) grouping together
signals under certain states were also defined to ease
the theme customization. For instance, all active signals
are grouped so that they can easily be painted with a
distinguishing colour (yellow elements in Fig. [2)):

fun _on : set univ {
state.Full+state. (LSOn+LSAuto)+SignalOn+... }

The theme file is available alongside the model specifi-
cation in the repository.

4.2 Reference validation sequences

To effectively validate the developed model we checked
its behaviour against that of the reference validation
sequences [I4]. These are complex — each step specifying
the value of all the over 30 input and output signals,
with some containing over 20 steps — rendering their
manual codification infeasible. Thus, we implemented a
prototype to automatically translate tabular data that
represents signal values over time into Alloy 6 and back.
This validator is able to i) given a sequence of input and
output signals, report whether it is a valid execution in
our model; and #7) given a sequence of only input signals,
generate possible executions of the output signals to be
subsequently validated by domain experts.

We implemented the prototype so that the process
could be reproducible for other signal-based systems.
Thus, besides the sensor data, two additional pieces of
information must be provided to the validator for each
specific application: ¢) how the signal values should be
discretized; and i) the presence conditions for signals.
For our prototype, this information is passed in the
header of the tabular data, as depicted in Table |1 for
validation sequence 1 of the ELS (note that this is only
an excerpt of the codification of the more than 30 signals
over 17 steps). Single-value ranges are assumed to have
the same lower- and upper-bound. It also assumes, as
described in Section [3:2] that all signals are bottom-
level signatures of the hierarchy on Signal with the
exact same name as that of the sequence header, and
that elements representing the discretized values are at



10

Alcino Cunha et al.

the second layer of the State signature hierarchy, again
with the same name as the discretization in the header.

The translation can then be streamlined as follows.
The presence/absence of a Boolean signal s can sim-
ply be stated as s in SignalOn and s not in SignalOn,
respectively, while the state of the others is encoded
as s.state in v for a discretized value v. Sequences of
signal states are encoded using the operator ;, and let-
expressions are used to simplify this codification. The
particular variant of the sequence must also be encoded.
The validator currently implements only the pure Alloy
variability idiom, forcing the exact value of signature
Variant; adapting it to the colorful extension would be
straightforward, by specifying the desired variant in the
scope of the command.

The resulting predicates resemble the one in Fig. [3]
for the sequence from Table [l (including steps that
have been omitted for simplicity). The expected variant
(1.11-12) and both the sequence of input (Il. 1-10) and
output (11. 15-17) signals are encoded, relying on let-
expressions for improved readability (recall that unlike
the validation sequences, our output signals are only
updated in the succeeding state, hence the after). At the
last state an always operator is applied, since outputs
are expected to stabilize when inputs do. Although the
reference sequences provide timestamps for the events
(the first column), these are ignored since real-time is
abstracted in our model.

Figure [2] depicts the outcome of running this predi-
cate (with steps scope determined from the length of the
sequence), particularly the transition where the bright-
ness is below the threshold and the low beam headlights
are activated. We were able to model all 9 validation
sequences of version 1.8 of the document and show that
they hold for our ELS model, except for concrete values
for the high beam illumination distance and strength in
sequence 9 (ELS-33) due to arithmetic operations.

4.3 Requirement verification

The last step of the process was to verify whether the
expected requirements hold for the modelled ELS.

As an example, consider requirement ELS-14, stating
that whenever the engine is on and the light switch set
to on, low beams will be active. This can be specified
in the following temporal assertion:

assert ELS14 { always (
(KeyState.state in KeyOnPosition and

LightRotarySwitch.state in LSOn) implies
LowBeam.state’ in Full) }

For a more complex example, consider ELS-17, stat-
ing that with daytime running light but without ambient

light, the low beams are activated until the engine is
turned off. This can be encoded as:
assert ELS17 { always (
let keyPos = KeyState.state in KeyOnPosition |
(DaytimeLights in SignalOn and
not AmbientLighting in SignalOn and
keyPos) implies
(LowBeam.state’ in Full+Half until not keyPos)
or always keyPos }

stating that in traces where daytime running light is
active but not ambient lighting, either the engine is
eventually turned off and the low beams are active until
then (temporal operator until) or the engine remains
on forever.

We were able to check most ELS requirements except
for the limitations discussed in the following section. The
described checks (that verify the property for all variants
at once) take around 6s and 10s, respectively, using the
bounded engine of Alloy 6 under the Glucose SAT solver
and for 15 steps in a commodity 2,3 GHz Intel Core
i5 with 16GB RAM. More complex requirements — like
those including periodic events such as ELS-2 and ELS-4
— take around lmin.

5 Discussion and lessons learned

The reference document Throughout the development
of the ELS model we encountered 14 issues with the
reference documents, mostly during modelling and pre-
liminary validation, and when running the reference
sequences. We reported them to the case study chair
who promptly replied. Of the first 4 reported issues,
3 resulted in fixes to the reference document (version
1.11); unfortunately, at the time of submission, no new
version of the reference document has been released
after the other 10 issues were reported (unofficially, at
least 3 resulted in validation sequence fixes). Roughly,
the issues encountered regarded one of the following
components:

environment model inconsistencies or missing fea-
tures related to the signals detected in the early
modelling process (e.g., the lack of a signal for the
middle brake light, making it impossible to flash
(ELS-40); or inconsistent representations of the pit-
man arm signals when it was split into two distinct
signals for vertical and horizontal movement);

behavioural model ambiguities detected in the re-
quirements while modelling and animating the state
machine (e.g., conflicting requirements where the
precedence is not explicitly stated, such as whether
ELS-18 or ELS-19 has priority on low beam be-
haviour; ambiguous nomenclature, such as what ac-
tivating high beams means for the 3 relevant signals;
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Table 1: Snippet of tabular data provided to our validator for sequence 1.

let s1 = not AmbientLighting in SignalOn |

always sl

let s1 = not DarknessModeSwitchOn in SignalOn |

always sl

let sl
s2 = LightRotarySwitch.state in LSOff |

© o N o oA W N

s2 = BrightnessSensor.state in Bright |
$2;52;52;52;51;50;s2;50;always s2
EU in Variant
ArmoredVehicle not in Variant

e =
w N = O

after {

-
'S

. ambient darknessMode lightRotary . armored lowBeam
Time |5 ohting Switchon Switch brightnessSensor | marketCode | yopioqq | - Left
0=0ff;
0=False; 0=False; 0=0ff; 0-199=Dark; 1=USA; 1=True; 10=Low;
1=True 1=True 1=Auto; 200—250:Gre)_/; 2=Canada; O0=False 50=Half;
2=0n 251-100000=Bright 3=EU !
100=Full
armored
Vehicle=True
0:03 0 0 1 500 3 0 0
0:04 0 0 1 200 3 0 0
0:05 0 0 1 199 3 0 100

LightRotarySwitch.state in LSAuto, sO = LightRotarySwitch.state in LSOn,

§2;52;s2;s51;s1;s1;s1;s1;51;51;50;50;s1;50;50;s0;always sl
let sO = BrightnessSensor.state in Dark, sl = BrightnessSensor.state in Grey,

15 let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in LightOff,
16 sl = LowBeamLeft.state in LightHalf, sO = LowBeamLeft.state in LightFull |
17 $3;53;53;53;53;50;50;50;53;53;50;53;s3;51;53;s2;always s3

18 ..}

Fig. 3: Alloy 6 encoding of the sequence from Table

or under-specified behaviour, such as the beam in-
tensity of tail lamps);

validation sequences inadmissible sequences, mean-
ing that the expected output signals could not be
achieved from the input signals in our model (e.g.,
tail lamps not being activated or not blinking in
sequence 7).

It must also be noted that, since the modelling and val-
idation process was iterative, some requirement ambigu-
ities were clarified by observing the reference sequences.
For instance, it is not clear from ELS-22 that when tail
lamps are activated, they are assigned the same intensity
as that of the low beams, but the sequences showed that
to be the case (e.g., in ELS-15).

In our perspective, there were two main sources of
confusion in the requirements. One has to do with the
blinking lights and the nature of the dark cycles: it was
not clear under which situations, if any, such cycles
should be interrupted, and under which situations do
they impact the tail lamps. The second has to do with
high beam headlights, which are controlled by 3 distinct
signals: it is often not clear what it means to activate
the high beams and how the 3 signals should be updated

and again how they relate to the intensity of the tail
lamps.

The followed approach

Due to being based on input and output signals,
the ELS does not require rich data structures, one of
the main advantages of Alloy’s relational formalism.
Nonetheless, we argue that the Alloy type system still
allowed us to handle certain characteristics of the ELS
more elegantly than in other lower-level languages. The
signature hierarchy allowed us to group together related
elements use first-order logic constraints to reason about
them. It also allowed us to easily handle changes in the
architecture entailed by the different ELS variants. On
the other hand, the flexibility of the Alloy language al-
lowed us to encode an underspecified ELS state machine,
complemented with additional temporal restrictions that
further refine its behaviour.

As already stated, we only failed to address require-
ments requiring arithmetic operations (ELS-33 for calcu-
lating the illumination distance and luminous strength of
high beams, and ELS-47 for calculating the maximum
light intensity under over-voltage) since concrete nu-
meric values are not considered. The abstracted time also
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renders reasoning about real-time requirements infeasi-
ble, such as ELS-10 enforcing the duration of blinking
cycles to 1s, or the part of ELS-18 forcing the activation
of the automatic low beams for 3s. This abstraction also
made requirements related to periodic events — such as
the bright and dark cycles of blinking lights — the most
cumbersome to specify. Some features were simplified
to avoid additional internal states, namely the gentle
fade-out of cornering lights (ELS-24) or the flashing of
emergency brake lights (ELS-40). ELS-37, dealing with
the interaction with the SCS, has been disregarded.

The multiple variants of the ELS requirements moti-
vated the extension of the feature annotations from [20]
for Alloy 6 and its Analyzer. Since the ELS is not partic-
ularly rich in variability, we did not find multi-variant
modelling in a pure Alloy idiom to be unmanageable, but
it did affect the comprehension of the model. Nonethe-
less, in the colourful Alloy model variability points are
explicitly marked and are thus more maintainable. The
exception is the axiomatization of the feature model,
and we are already studying sensible ways to improve
it, that we also expect to be useful in more advanced
feature-oriented analysis procedures. The complexity
of the case study also helped us identify additional op-
erators whose annotation would be useful in colourful
Alloy — namely, if-then-else expressions common in the
definition of state machines, when certain branches are
only relevant in certain variants.

A limitation of Alloy-based approaches is the lack
of support for deriving a software implementation from
the design models. This is particularly challenging in
Alloy because the evolution of the system model is
constrained by arbitrary temporal constraints and not
through events that update the current state. It would
be interesting to explore whether under stricter event
idioms this would be feasible, such as the one proposed
in [4]. However, since the Alloy Analyzer is able to ex-
haustively generate instances conforming to imposed
restrictions, it is well-suited to generate test cases, and
in particular has often been used in the model-based
testing of system implementations.

6 Comparison

Arcaini et al. [3] proposed modelling the ELS (and the
SCS) on ASM supported by the ASMETA toolset. The
notion of ASM module is used to keep the design mod-
ular, and a refinement-based approach is followed to
incrementally introduce new functionalities. Like our
approach, time is abstracted, with a function notify-
ing that a certain amount of time relevant of an event
has passed. For validation they relied on an interactive
animator AsmetaA and on the validation of scenarios

(written on a specialized language) using AsmetaV. They
also developed a technique to export animation sessions
into scenarios. The Alloy 6 Analyzer also allows an in-
stance to be exported back as predicate that represents
it. Other than ours, this answer to the case study is the
only one that has explicitly addressed the variability of
the ELS, namely by introducing additional variables in
the initial state. The authors argue that this hinders
readability and maintainability, and question whether
a parametric version of ASM could be helpful. While
ASMETA has support for deriving implementations or
checking the conformance of available implementations,
such features were not explored in this work.

Mammar et al. [24] propose to model the ELS using
Event-B supported by the Rodin platform. As typical
in the B method, stepwise refinement was employed,
although the authors argue that due to the nature of
the ELS, it was difficult to identify a manageable refine-
ment strategy. The ProB plugin was used to animate the
validation sequences and to model check the developed
model, and the Atelier-B plugin to subsequently prove
correctuess of the specification (with 23% proof obliga-
tions automatically proved). Time is modelled explicitly,
with an event incrementing time arbitrarily (and in re-
fined versions, triggering timed events). Event-B does
not support temporal logic and although ProB allows
temporal properties to be verified over Event-B spec-
ifications, its performance was infeasible for the ELS.
Thus, ProB was only used to check invariants (some
temporal properties were addressed by introducing ad-
ditional variables in the model, but it is not clear which
certain requirements were left unchecked due to this lim-
itation). A similar strategy was employed by Mammar
and Frappier [23] to model the SCS sub-system of the
case study.

Leuschel et al. [19] also rely on the B method to
model the blinking lights function of the ELS, but take a
different approach. Due to the restrictions on modelling
events in Event-B (and the fact that Event-B models are
not pure text hindering collaborative work), they start
instead by modelling and validating the system in the
more flexible classical B in Atelier-B. Time is modelled
explicitly as a integer variable that can increase arbi-
trarily until deadlines for other events are met. During
that first step, they relied on ProB for animation and
model checking of invariants. One of the main features
of ProB is the ability to plugin different visualizers,
and the authors developed a new one based on SVGs,
VisB, that allowed the visualization of scenarios using
the images from the reference document [13]. It is ex-
emplified with one of the validation sequences. Some
efforts have been developed to provide more advanced
visualizations for Alloy instances [12)[7}[I0], although we



Validating Multiple Variants of an Automotive Light System with Alloy 6 13

have not explored them in this work. Once the classical
B model was stable, it was converted into Event-B so
that the proof abilities of Rodin could be used (89%
automatically proved). These were complemented with
model checking of LTL temporal properties, which in
ProB are written in a specific syntax, although it’s not
clear which ELS requirements are covered.

On a completely different approach, Krings et al. [18]
propose instead to start from a low-level implementa-
tion of the ELS and SCS in MISRA C and subsequently
verify its correctness using the CBMC model checker.
Test-driven development is employed, including the cod-
ification of the validation sequences as integration tests.
CBMC does not support temporal logic, but rather relies
on code assertions amounting to invariant checking (al-
though additional variables can be used to compare past
states). To allow the verification of timed requirements,
a mockup clock was used to allow arbitrary evolution
of reported time.

7 Conclusions

In this paper we proposed the modelling of the ELS
on Alloy 6 and its validation and verification by the
accompanying Analyzer. We believe that the flexibility
of the Alloy language, allowing a modelling style that
mixes under-specified transitions with declarative tem-
poral constraints, is well-suited for early development
stages where the concrete behaviour of the system is still
not fully specified. This flexibility also allows structural
and behavioural variability points to be address even
in pure Alloy 6, although with some toll on readability.
The early validation of such designs is supported by the
Analyzer, which is able to quickly animate scenarios en-
coded by the user and then perform interactive scenario
exploration. This is particularly useful for communi-
cating with the stakeholders less familiar with formal
software development methods, despite the fact that the
Analyzer’s visualizer is not as customizable as, for in-
stance, that of ProB. Verification can then be performed
through model checking for arbitrary LTL properties.
When compared to the other answers to the case study,
Alloy seems to provide a more unified experience: the sys-
tem model, the scenarios, the temporal properties and
the animation and checking commands, are all specified
in the same format and processed by the Analyzer.
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