Validating Multiple Variants of an
Automotive Light System with Electrum

Nuno Macedo, Alcino Cunha, Chong Liu
INESC TEC & University of Porto / University of Minho

ABZ’21, June 2021

ELS in Electrum

A model checker for relational linear temporal logic

 Formal specification language with

structural and dynamic constructs Ve

* Declarative specifications, behaviour can =
be under-specified .

* Automatic verification through solving,
returns counter-example traces =

pppppp

* [race visualiser and scenario exploration os

OperathnS haslab.github.io/Electrum/

ELS in Electrum

A model checker for relational linear temporal logic

 Formal specification language with

structural and dynamic constructs Ve

* Declarative specifications, behaviour can =
be under-specified .

* Automatic verification through solving,
returns counter-example traces =

pppppp

* [race visualiser and scenario exploration os

OperathnS haslab.github.io/Electrum/

ELS in Electrum

Main features

* Pros
o Structural and behaviour modelling at high-level of abstraction
 Animation (and exploration) of the reference scenarios
* Flexible language, support for variants

 Cons

 No numeric analysis

ELS in Electrum

Strategy overview

wn

o

Adaptive Exterior Light and Speed Control
System

Frank Houdek' and Alexander Raschke?

! Daimler AG, Research and Development, Stuttgart, Germany
frank.houdek@daimler.com
2 Inst. of Software Engineering, Ulm University, Germany
alexander.raschke@Quni-ulm.de

1 Introduction

This case study continues the successful series of case studies for formal spec-
ification and verification of the ABZ conference series, which started with the
landing gear system[1] and expanded with the hemodialysis medical device[4]
and the European Train Control System (ETCS)[2] in the following years. This
document describes two systems from the automotive domain: an adaptive exte-
rior light system (ELS) and a speed control system (SCS). This specification is
based on the SPES XT running example[3]. Besides their general architectures,
the requirements of the software based controllers are described. Both systems
are only loosely coupled, which makes it possible to handle them independently.

Conventions. Throughout this document, we use the following conventions to
better distinguish different terms: Main functions are set in bold, sub-functions
are italicized. Predefined signals are written in typewriter and for the values
of signals we use a font without serifs.

The structure of the document is as follows: First, the general hardware
architecture of a modern car is sketched in Sect. 3. Then, the adaptive exterior
light system is described in Sect. 4, followed by the requirements of the speed
control system (Sect. 5). For each of the systems, the user interface, the needed
sensors and the available actuators are described before the different features
are explained in detail. In Sect. A, all available signals and their value ranges
are summarized in a table.

Scenario Comment

1) Normal light, no daytime light, no ambient light, day
All off, day
Ignition to Keylnserted -> no effect on light
Ignition to ON position -> no effect on light

Requirement ‘ime [mm:ss[:ms]

Light switch to AUTO -> no effect on light as it is bright ELS-18
Start driving thourght tunnel, value at border -> no effect ELS-18
Brightness value below threshold -> light on ELS-18
Brighness value exceeds hystheresis value, but no 3 ELS-18
seconds on time -> no effect

Brightness value below threshold -> light remains on ELS-18
Brighness value exceeds hystheresis value, and light has ELS-18
been on for at least 3 seconds -> light off

Tunnel ride terminated -> no effect ELS-18
light cwitrh ta ON -5 lichts nn Fis-14

Reference documents

0:00
0:01
0:02
0:03
0:04
0:05
0:06

0:07
0:08

0:12
n-12

Environment model

0=

N NN NN = O

N

[

curr
n-snon T

o

State machine definition

Visualization elements

Animation commands

Reference commands

E O =

Theme Magic Layout Evaluator New Config NewPath NewInit New Fork

-DaylimeLights

-

Projection: none

-

HazardWarningSwitchOn

¢ LightRotarySwitch PitmanArmForthBack
arted state: LRSAuto state: ForthBackNeutral

PitmanArmUpDown

Car
BrakePedal: Little
BrightnessSensor: Dark
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

eamRange . HighBeamMotor
te: HOff > chEeaay state: Near

s;teklggp CorneringLightLeft <

Check commands

Electrum model

state: UpDownNeutral uce
BrakeLight LeftSide

LowBeamLeft TailLampLeft

state: Temp state: Temp

Executing "Check ELS2 for 10 steps"
Solver=minisat(jni) Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=2 Symmetry=20 Mode=batch

KeyState
state: NoKeylInserted

HighBeamRange

Reverselight > stal
Blin
stat

HOff

No counterexample found. Assertion may be valid. 237ms.

Amb

LightRotarySwitch

state: LRSAuto

HighBeamOn

nkLeft A LowBeamLeft
CorneringLightLeft —

— 1..10 steps. 623683 vars. 12300 primary vars. 716336 clauses. 42998 1ms.

Electrum Analyzer

-DaylimeLights

PitmanArmForthBack
state: ForthBackNeutral

PitmanArmUpD¢
state: UpDownNe

Car
BrakePedal: Little
BrightnessSensor: Dark
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

BrakeLight LeftSi

ELS Model

Environment

 Mimics input and output signal
architecture to streamline translation

* TJo ease modelling and maintainability:

* Signal hierarchy introduced
 Boolean signals distinguished

* Acceptable value discretised from the
requirements

e Evolution as mutable elements

abstract sig Signal {}

abstract sig BooleanSignhal extends Signal {}
var sig SignalOn in BooleanSignal {}

abstract sig Light extends Sighal {

var state : one LightState }
extends Light {}

abstract sig Beam, ...

abstract sig LowBeam, TailLamp extends Beam {}
one sig LowBeamLeft, LowBeamRight extends LowBeam {}
one sig TaillLamplLeft, TaillLampRight extends TaillLamp {}

one sig AmbientLighting, DaytimelLights extends BooleanSignal {}

abstract sig LightState extends State {}
abstract sig Full, Off extends LightState {}
one sig Half, Low extends LightState {}

one sig On, Temp, ...
one sig OffP, ...

extends

extends extends extends

y
/\ SignalOn \) < DaytimeLights >< AmbientLighting > Beam
4

extends

BooleanSignal @ < LightRotarySwitch > M

\\\\\\\\\\

extends

\\\\\\\\

extends Full {}
extends Off {}

L

extends

extends

LightRotarySwitchState

te
xtends
extends ex
extends extends extands\ extends extend

extend
s

X
nds
extend
Al

S

[
/ ext

e
state
xtends

e
KeyStateState
i
xtends

Conars s o
A

Low

Half

Full

off

On uto

Keylnse

rte

e
d

NoKeylnserted

extends

d

A
extendas
exte

nds

extends extends extends extends
< LowBeamLeft > < LowBeamRight ><TaiILampLeft >< TailLampRight > OffP

Temp

On

Low beam headlights signals

ELS Model

State machine
* A predicate for each ELS function,
enforced to make the system evolve

e Determine the next state of the
signals from the current state

* No explicit notion of time, each state
has arbitrary duration

* Timed events are allowed to take an
arbitrary (but finite) number of states

KeyState.state in KeyInIgnitionOnPosition and
LightRotarySwitch.state in LSOn implies LowBeam.state’ in On

ELS-14

DaytimelLights in SignalOn and

KeyState.state not in KeyInIgnhitionOnPosition or
(LowBeam.state in On and KeyState.state in KeyInserted and
AmbientLighting not in SignalOn) implies LowBeam.state’ in On

ELS-17

let low = LowBeam.state |
LightRotarySwitch.state in LRSAuto and KeyState.state in
KeyInIgnitionOnPosition implies
one low’ and
BrightnhessSensor.state in Dark
implies low’ in low. (univ-Temp+Temp-0n++0n-0n) else
BrightnessSensor.state in Bright implies

low’ in low. (univ-0ff+Temp-Temp) else
BrightnessSensor.state in Grey and low not in Temp implies

low’ in low. (iden+Temp-0n)

low in Temp implies eventually low not in Temp

ELS-18

Handling variability

Pure Electrum idiom

e Features are “lifted” to the
language

e Structural and behavioural
constraints dependent on
selected features

* Supported by the regular
Analyzer, but difficult to maintain

abstract sig Feature {}

abstract sig MarketCode extends Feature {}

one sig USA, EU, Canada extends MarketCode {}

one sig ArmoredVehicle extends Feature {}

sig Variant in Feature {}

fact FeatureModel {
USA in Variant iff no (EU+Canada)&Variant
Canada in Variant iff no (USA+EU)&Variant
EU in Variant iff no (Canada+USA)&Variant }

Feature modelling

fact darknessModeSwitchOn {
some DarknessModeSwitchOn iff ArmoredVehicle in Variant }

Structural variability

not (ArmoredVehicle in Variant and DarknessModeSwitchOn in

SignalOn) and
AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and before KeyState.state in KeyInIgnitionOnPosition and
KeyState.state not in KeyInIgnhitionOnPosition implies
LowBeam.state’ in Temp

Behavioural variability

Handling variability

COIorfUI EIeCtrum some none and some none

some none and some none }

Feature modelling

 Language extension to model

variability
° Varlablll-ty pOIntS Wl-th pOS't'Ve/ one sig DarknessModeSwitchOn extends BooleanSignal
negative presence conditions Structural variability

* Feature-aware analysis (through
projection or feature lifting)

not DarknessModeSwitchOn in SignalOn and
AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and

. implies LowBeam.state’ in Temp

Behavioural variability

pred LowBeam2Env {

Validation & Verification always AmbientLighting not in SignalOn

always KeyState.state in KeyInserted
let 1lrs = LightRotarySwitch.state |

AnimatiOn and validaticn lrs in LSOff;always lrs in LSOn }

Low beams input

° Slmple Commands tO prel(_jole;ggaBrﬁTs:‘::(g i[n OffP;always LowBeam.state in Half }
demonstrate functionalities

Low beams expected output

* EnCOde a Sequence Of InpUt r‘unLcI)_\/(\l)l‘é\faerr?gnEzn\jE and after LowBeam2Exp } for 5 steps
sighals (and expected output for
quick validation)

Animation command

e Elements to structure visualiser
(do not affect analysis)

* Operations to explore trace
instances (e.g., change transition)

Validation & Verification
Reference scenarios

* Validator implemented to check
reference sequences

* |nput signals translated into
commands

* Resulting output signals checked
against the reference

e Relies on the discretisation of
signal values

let s1 = not AmbientLighting in SignalOn |
always sl
let s1 = not DarknessModeSwitchOn in SignalOn |
always sl
let s1 = LightRotarySwitch.state in LSAuto, s©@ =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|
S2;52;52;51;s1;s1;s1;51;s1;s1;50;50;51;s0;s0;s0;always sl
let s@ = BrightnessSensor.state in Dark, sl = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |
S2;52;52;52;s51;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
after {
let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, sl = LowBeamLeft.state in LightHalf, s0@ =
LowBeamLeft.state in LightFull |
$3;53;53;53;53;50;50;50;53;53;50;s3;s3;51;s3;s2;always s3 ... }
Reference sequence 1

< AmbientLighting > DaytimeLights

<HazardWamingSwitch0n >

PitmanArmForthBack PitmanArmUpDown
state: ForthBackNeutral state: UpDownNeutral

ucp

KeyState
state: NoKeyinserted

Car
(AllDoorsClosed)
BrakePedal: Little

BrightnessSensor: Bright
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

Vi

BrakeLight LeftSide
BlinkLeft CorneringLiahtLeft LowBeamLeft TailLampLeft Blin
state: OffP Ll L state: OffP state: OffP stati

Validation & Verification
Reference scenarios

* Validator implemented to check
reference sequences

* |nput signals translated into
commands

* Resulting output signals checked
against the reference

e Relies on the discretisation of
signal values

let s1 = not AmbientLighting in SignalOn |
always sl
let s1 = not DarknessModeSwitchOn in SignalOn |
always sl
let s1 = LightRotarySwitch.state in LSAuto, s©@ =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|
S2;52;52;51;s1;s1;s1;51;s1;s1;50;50;51;s0;s0;s0;always sl
let s@ = BrightnessSensor.state in Dark, sl = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |
S2;52;52;52;s51;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
after {
let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, sl = LowBeamLeft.state in LightHalf, s0@ =
LowBeamLeft.state in LightFull |
$3;53;53;53;53;50;50;50;53;53;50;s3;s3;51;s3;s2;always s3 ... }
Reference sequence 1

< AmbientLighting > DaytimelLights

< HazardWarningSwitchOn >

PitmanArmForthBack PitmanArmUpDown

state: ForthBackNeutral state: UpDownNeutral UCP

KeyState
state: KeylnlgnitionOnPosition

4 N

Car
(AllDoorsClosed, EngineOn)
BrakePedal: Min
BrightnessSensor: Bright
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

N

. > HighBeamRange . HighBeamMotor . .
erselLight < state: HOff > HighBeamOn < SR BrakeLight LeftSide
BlinkLeft P
state: OffP <CornermngghtLeft >

Validation & Verification
Reference scenarios

* Validator implemented to check
reference sequences

* |nput signals translated into
commands

* Resulting output signals checked
against the reference

e Relies on the discretisation of
signal values

let s1 = not AmbientLighting in SignalOn |
always sl
let s1 = not DarknessModeSwitchOn in SignalOn |
always sl
let s1 = LightRotarySwitch.state in LSAuto, s©@ =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff

|
S2;52;52;51;s1;s1;s1;51;s1;s1;50;50;51;s0;s0;s0;always sl

let s@ = BrightnessSensor.state in Dark, sl = BrightnessSensor.state

in Grey, s2 = BrightnessSensor.state in Bright |
S2;52;52;52;s51;s0;s2;s0;always s2

EU in Variant

ArmoredVehicle not in Variant

after {
let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, sl = LowBeamLeft.state in LightHalf, s0@ =
LowBeamLeft.state in LightFull |

$3;53;53;53;53;50;50;50;53;53;50;s3;s3;51;s3;s2;always s3 ... }
Reference sequence 1

< AmbientLighting > DaytimelLights

< HazardWarningSwitchOn >

PitmanArmForthBack PitmanArmUpDown
state: ForthBackNeutral | | state : UpDownNeutral

ucp

KeyState
state: KeylnlgnitionOnPosition

Car
(AllDoorsClosed, EngineOn)
BrakePedal: Zero
Brightness Sensor : Dark
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

. HighBeamRange . HighBeamMotor . .
erseLight) < state: HOff > HighBeamOn < SRR BrakelLight LeftSide

Validation & Verification
Reference scenarios

* Validator implemented to check
reference sequences

* |nput signals translated into
commands

* Resulting output signals checked
against the reference

e Relies on the discretisation of
signal values

let s1 = not AmbientLighting in SignalOn |
always sl
let s1 = not DarknessModeSwitchOn in SignalOn |
always sl
let s1 = LightRotarySwitch.state in LSAuto, s©@ =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|
S2;52;52;51;s1;s1;s1;51;s1;s1;50;50;51;s0;s0;s0;always sl
let s@ = BrightnessSensor.state in Dark, sl = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |
S2;52;52;52;s51;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
after {
let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, sl = LowBeamLeft.state in LightHalf, s0@ =
LowBeamLeft.state in LightFull |
$3;53;53;53;53;50;50;50;53;53;50;s3;s3;51;s3;s2;always s3 ... }
Reference sequence 1

<AmbientLighting > DaytimeLights

<HazardWarningSwitch0n >

PitmanArmForthBack PitmanArmUpDown
state: ForthBackNeutral state: UpDownNeutral

Ucp

KeyState
state: KeylnlgnitionOnPosition

v N

Car
(AllDoorsClosed, EngineOn)
BrakePedal: Min
BrightnessSensor : Grey
CameraState: Ready
CurrentSpeed: Stopped
SteeringAngle: Middle
VoltageBattery: VoltageOk

AN

. > HighBeamRange . HighBeamMotor . .
erselLight < state: HOff > HighBeamOn < ST BrakeLight LeftSide
BlinkLeft o LowBeamLeft

state: OffP <CornenngL|ghtLeft > state: OffP

assert ELS14 { always {

Validation & Verification
KgyState.statg in KeyInIgnitionOQPos%tion .
Checking reqUirementS Ilzlfg’;R(;t?r‘ySwuch.state in LSOn implies LowBeam.state’ 1in

ELS-14

* Assertions written in arbitrary
first-order linear temporal logic assert ELS17

let keyPos = KeyState.state in KeyInIgnitionOnPosition,
amb = AmbientLighting in SignalOn,

® SCOpe bOth on unlverse and day = DaytimelLights in SignalOn |

always (day and not amb) implies

rT]Ei)(irT]Ler]'tf{i(:f} IEBr]thr] always ((LowBeam.state’ in Full+Half until not keyPos) or

always keyPos) }

* For traces of length 15, most ELS-17

take a few seconds (some up to
a minute)

Executing "Check ELS2 for 10 steps”

Solver=minisat(jni) Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=2 Symmetry=20 Mode=batch
1..10 steps. 623683 vars. 12300 primary vars. 716336 clauses. 429981 ms.
No counterexample found. Assertion may be valid. 237ms.

Conclusions

Outcome

 Modelled the 9 main functions

 Modelled the 12 variants (4 distinct behaviour)
» Validated against the 9 reference scenarios
 Checked most of the 48 requirements
 Model available at:

https://qgithub.com/haslab/Electrum2/wiki/els

https://github.com/haslab/Electrum2/wiki/els

Conclusions

Issues identified in ELS

 Found 14 issues, resulted in fixes to the reference document and sequences
* |nconsistencies detecting during early modelling stages
 Ambiguities when modelling the state machine
* |nvalid outputs in the reference sequences

 Mostly related with dark cycles of blinking lights and handling of high beams

Conclusions

Limitations of the approach

 Main limitation is handling the 2 numeric requirements
* e.0., ELS-17, calculate calculating illumination distance of high beams

* The time abstraction also disallows fine reasoning about timed requirements
* e.g., ELS-10, forcing blinking cycles to take 1s

* This also rendered periodic functionalities the most cumbersome to encode

* encoding cycles of arbitrary bounded duration

