
ABZ’21, June 2021

Validating Multiple Variants of an
Automotive Light System with Electrum
Nuno Macedo, Alcino Cunha, Chong Liu
INESC TEC & University of Porto / University of Minho

ELS in Electrum
A model checker for relational linear temporal logic

• Formal specification language with
structural and dynamic constructs

• Declarative specifications, behaviour can
be under-specified

• Automatic verification through solving,
returns counter-example traces

• Trace visualiser and scenario exploration
operations haslab.github.io/Electrum/

ELS in Electrum
A model checker for relational linear temporal logic

• Formal specification language with
structural and dynamic constructs

• Declarative specifications, behaviour can
be under-specified

• Automatic verification through solving,
returns counter-example traces

• Trace visualiser and scenario exploration
operations haslab.github.io/Electrum/

ELS in Electrum
Main features

• Pros

• Structural and behaviour modelling at high-level of abstraction

• Animation (and exploration) of the reference scenarios

• Flexible language, support for variants

• Cons

• No numeric analysis

ELS in Electrum
Strategy overview

Environment model

State machine definition

Animation commands

Reference commands

Check commands

Electrum modelReference documents Electrum Analyzer

Visualization elements

abstract sig Signal {}
abstract sig BooleanSignal extends Signal {}
var sig SignalOn in BooleanSignal {}

abstract sig Light extends Signal {
var state : one LightState }

abstract sig Beam, ... extends Light {}

abstract sig LowBeam, TailLamp extends Beam {}
one sig LowBeamLeft, LowBeamRight extends LowBeam {}
one sig TailLampLeft, TailLampRight extends TailLamp {}

one sig AmbientLighting, DaytimeLights extends BooleanSignal {}

abstract sig LightState extends State {}
abstract sig Full, Off extends LightState {}
one sig Half, Low extends LightState {}
one sig On, Temp, ... extends Full {}
one sig OffP, ... extends Off {}

Environment

• Mimics input and output signal
architecture to streamline translation

• To ease modelling and maintainability:

• Signal hierarchy introduced

• Boolean signals distinguished

• Acceptable value discretised from the
requirements

• Evolution as mutable elements

ELS Model

Low beam headlights signals

KeyState.state in KeyInIgnitionOnPosition and
LightRotarySwitch.state in LSOn implies LowBeam.state’ in On

State machine

• A predicate for each ELS function,
enforced to make the system evolve

• Determine the next state of the
signals from the current state

• No explicit notion of time, each state
has arbitrary duration

• Timed events are allowed to take an
arbitrary (but finite) number of states

ELS Model
ELS-14

DaytimeLights in SignalOn and
KeyState.state not in KeyInIgnitionOnPosition or
(LowBeam.state in On and KeyState.state in KeyInserted and
AmbientLighting not in SignalOn) implies LowBeam.state’ in On

ELS-17

let low = LowBeam.state |
LightRotarySwitch.state in LRSAuto and KeyState.state in
KeyInIgnitionOnPosition implies

one low’ and
BrightnessSensor.state in Dark

implies low’ in low.(univ→Temp+Temp→On++On→On) else
BrightnessSensor.state in Bright implies

low’ in low.(univ→Off+Temp→Temp) else
BrightnessSensor.state in Grey and low not in Temp implies

low’ in low.(iden+Temp→On)

low in Temp implies eventually low not in Temp

ELS-18

abstract sig Feature {}
abstract sig MarketCode extends Feature {}
one sig USA, EU, Canada extends MarketCode {}
one sig ArmoredVehicle extends Feature {}
sig Variant in Feature {}
fact FeatureModel {

USA in Variant iff no (EU+Canada)&Variant
Canada in Variant iff no (USA+EU)&Variant
EU in Variant iff no (Canada+USA)&Variant }

Pure Electrum idiom

• Features are “lifted” to the
language

• Structural and behavioural
constraints dependent on
selected features

• Supported by the regular
Analyzer, but difficult to maintain

Handling variability

Feature modelling

fact darknessModeSwitchOn {
some DarknessModeSwitchOn iff ArmoredVehicle in Variant }

Structural variability

not (ArmoredVehicle in Variant and DarknessModeSwitchOn in
SignalOn) and

AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and before KeyState.state in KeyInIgnitionOnPosition and
KeyState.state not in KeyInIgnitionOnPosition implies

LowBeam.state’ in Temp

Behavioural variability

fact FeatureModel {
➀➁some none➁➀ and ➁➂some none➂➁
➀➂some none➂➀ and ➊➋➌some none➌➋➊ }

Colorful Electrum

• Language extension to model
variability

• Variability points with positive/
negative presence conditions

• Feature-aware analysis (through
projection or feature lifting)

Handling variability

Feature modelling

➃one sig DarknessModeSwitchOn extends BooleanSignal➃

Structural variability

➃not DarknessModeSwitchOn in SignalOn➃ and
AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and
... implies LowBeam.state’ in Temp

Behavioural variability

pred LowBeam2Env {
always AmbientLighting not in SignalOn
always KeyState.state in KeyInserted
let lrs = LightRotarySwitch.state |

lrs in LSOff;always lrs in LSOn }Animation and validation

• Simple commands to
demonstrate functionalities

• Encode a sequence of input
signals (and expected output for
quick validation)

• Elements to structure visualiser
(do not affect analysis)

• Operations to explore trace
instances (e.g., change transition)

Validation & Verification

Low beams input

pred LowBeam2Exp {
LowBeam.state in OffP;always LowBeam.state in Half }

Low beams expected output

run LowBeam2 {
LowBeam2Env and after LowBeam2Exp } for 5 steps

Animation command

Reference scenarios

• Validator implemented to check
reference sequences

• Input signals translated into
commands

• Resulting output signals checked
against the reference

• Relies on the discretisation of
signal values

Validation & Verification
let s1 = not AmbientLighting in SignalOn |

always s1
let s1 = not DarknessModeSwitchOn in SignalOn |

always s1
let s1 = LightRotarySwitch.state in LSAuto, s0 =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|

s2;s2;s2;s1;s1;s1;s1;s1;s1;s1;s0;s0;s1;s0;s0;s0;always s1
let s0 = BrightnessSensor.state in Dark, s1 = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |

s2;s2;s2;s2;s1;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
...
after {

let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, s1 = LowBeamLeft.state in LightHalf, s0 =
LowBeamLeft.state in LightFull |

s3;s3;s3;s3;s3;s0;s0;s0;s3;s3;s0;s3;s3;s1;s3;s2;always s3 ... }
Reference sequence 1

Reference scenarios

• Validator implemented to check
reference sequences

• Input signals translated into
commands

• Resulting output signals checked
against the reference

• Relies on the discretisation of
signal values

Validation & Verification
let s1 = not AmbientLighting in SignalOn |

always s1
let s1 = not DarknessModeSwitchOn in SignalOn |

always s1
let s1 = LightRotarySwitch.state in LSAuto, s0 =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|

s2;s2;s2;s1;s1;s1;s1;s1;s1;s1;s0;s0;s1;s0;s0;s0;always s1
let s0 = BrightnessSensor.state in Dark, s1 = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |

s2;s2;s2;s2;s1;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
...
after {

let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, s1 = LowBeamLeft.state in LightHalf, s0 =
LowBeamLeft.state in LightFull |

s3;s3;s3;s3;s3;s0;s0;s0;s3;s3;s0;s3;s3;s1;s3;s2;always s3 ... }
Reference sequence 1

Reference scenarios

• Validator implemented to check
reference sequences

• Input signals translated into
commands

• Resulting output signals checked
against the reference

• Relies on the discretisation of
signal values

Validation & Verification
let s1 = not AmbientLighting in SignalOn |

always s1
let s1 = not DarknessModeSwitchOn in SignalOn |

always s1
let s1 = LightRotarySwitch.state in LSAuto, s0 =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|

s2;s2;s2;s1;s1;s1;s1;s1;s1;s1;s0;s0;s1;s0;s0;s0;always s1
let s0 = BrightnessSensor.state in Dark, s1 = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |

s2;s2;s2;s2;s1;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
...
after {

let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, s1 = LowBeamLeft.state in LightHalf, s0 =
LowBeamLeft.state in LightFull |

s3;s3;s3;s3;s3;s0;s0;s0;s3;s3;s0;s3;s3;s1;s3;s2;always s3 ... }
Reference sequence 1

Reference scenarios

• Validator implemented to check
reference sequences

• Input signals translated into
commands

• Resulting output signals checked
against the reference

• Relies on the discretisation of
signal values

Validation & Verification
let s1 = not AmbientLighting in SignalOn |

always s1
let s1 = not DarknessModeSwitchOn in SignalOn |

always s1
let s1 = LightRotarySwitch.state in LSAuto, s0 =
LightRotarySwitch.state in LSOn, s2 = LightRotarySwitch.state in LSOff
|

s2;s2;s2;s1;s1;s1;s1;s1;s1;s1;s0;s0;s1;s0;s0;s0;always s1
let s0 = BrightnessSensor.state in Dark, s1 = BrightnessSensor.state
in Grey, s2 = BrightnessSensor.state in Bright |

s2;s2;s2;s2;s1;s0;s2;s0;always s2
EU in Variant
ArmoredVehicle not in Variant
...
after {

let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in
LightOff, s1 = LowBeamLeft.state in LightHalf, s0 =
LowBeamLeft.state in LightFull |

s3;s3;s3;s3;s3;s0;s0;s0;s3;s3;s0;s3;s3;s1;s3;s2;always s3 ... }
Reference sequence 1

assert ELS14 { always {
KeyState.state in KeyInIgnitionOnPosition
LightRotarySwitch.state in LSOn implies LowBeam.state’ in
Full) } }Checking requirements

• Assertions written in arbitrary
first-order linear temporal logic

• Scope both on universe and
maximum trace length

• For traces of length 15, most
take a few seconds (some up to
a minute)

Validation & Verification

ELS-14

assert ELS17 {
let keyPos = KeyState.state in KeyInIgnitionOnPosition,

amb = AmbientLighting in SignalOn,
day = DaytimeLights in SignalOn |

always (day and not amb) implies
always ((LowBeam.state’ in Full+Half until not keyPos) or
always keyPos) }

ELS-17

Conclusions
Outcome

• Modelled the 9 main functions

• Modelled the 12 variants (4 distinct behaviour)

• Validated against the 9 reference scenarios

• Checked most of the 48 requirements

• Model available at:

https://github.com/haslab/Electrum2/wiki/els

https://github.com/haslab/Electrum2/wiki/els

Conclusions
Issues identified in ELS

• Found 14 issues, resulted in fixes to the reference document and sequences

• Inconsistencies detecting during early modelling stages

• Ambiguities when modelling the state machine

• Invalid outputs in the reference sequences

• Mostly related with dark cycles of blinking lights and handling of high beams

Conclusions
Limitations of the approach

• Main limitation is handling the 2 numeric requirements

• e.g., ELS-17, calculate calculating illumination distance of high beams

• The time abstraction also disallows fine reasoning about timed requirements

• e.g., ELS-10, forcing blinking cycles to take 1s

• This also rendered periodic functionalities the most cumbersome to encode

• encoding cycles of arbitrary bounded duration

