
Teaching Alloy with
Alloy4Fun

Nuno Macedo and Alcino Cunha

ABZ’23

Who are we?
• Teaching Alloy for several years (besides research)

• Alcino Cunha, University of Minho, 15 years

• Nuno Macedo, University of Porto, 5 years

• Mandatory (>100 students) and optional (<20
students) classes

• Last 3 years with Alloy4Fun

• Led the development by MSc students

Program

• Overview of the Alloy4Fun platform

• Defining logical challenges in Alloy4Fun

• Analyzing student submission data

Writing and executing models

Alloy4Fun overview
• Web-platform to specify, analyze and share Alloy models

• Doesn’t support all features of the Analyzer, best suited for simple models

• Additional features allow the creation of challenges to be used in classes:

• Ability to share models and instances, accompanied by themes

• Ability to define secrets in the model, allows the definition of exercises

• All data is collected, to monitor progress and identify bottlenecks

Alloy4Fun overview

Model execution

• ▶ launches the analysis of a command likewise the Analyzer

• If multiple commands defined, combobox allows selection

• If satisfiable, an instance/counter-example is graphically shown

• Execution disabled until changes are made (or other command selected)

Model execution

Instance visualization

Instance visualization

• If the instance is a trace, → and ← allow state navigation (⟲ for last state)

• Single state shown at a time

• Current state identified in bottom-right corner

Alloy4Fun overview

Instance visualization

Instance visualization

Customizing visualization

• Likewise the Analyzer, visualization can be customized

• Accessible by right-clicking elements in the visualizer

• Not all the options available, only essential ones

• Layout not as strict, alternative algorithms and manual positioning

Customizing visualization

Instance enumeration

• Only basic enumeration is provided, $ for a new instance

• Can navigate back to previously seen instances %

Sharing models and instances

Sharing models

• The current state of the model can be shared through a permalink &

• Visualization customization shared alongside the model

• Useful when interacting with students to discuss attempts

Sharing models

Sharing instances

• Instances can also be shared with a similar mechanism &

• Visualization is fully preserved, including the position of the elements

Sharing instances

Managing links

• Alloy4Fun is completely anonymous by design

• No accounts for users to track their permalinks

• Users must maintain their permalinks through external means

Model secrets

Secret annotations

• Secrets in a model are introduced with annotation //SECRET

• Will make succeeding paragraph a secret

• Declaration of signature, predicate, command, …

• Comments, retro-compatible with Analyzer

Public and private views
• Once secrets are introduced in the model, there are two views available:

• Private: shows the complete model with secrets

• Public: hides the secret declarations

• They can still be used if name is known

• Secret signatures still shown (unless hidden by theme)

• Secret commands can be selected for execution

• Different permalinks & generated for models with secrets

Public and private views

Private view

Public view

Public and private views

• Interface changes slightly

• Public view: ' warns user of hidden paragraphs

• Private view: (and) enable the extraction of submission statistics

Evolving views

• Public views can be changed and re-shared, preserving original secrets

• But secrets only inherited from a single model

• Introducing secrets in a public view breaks the connection with the
original

• When evolving a private view, shared links will still point to the original,
must re-generate

Defining challenges

Defining challenges

• Secret paragraphs can be used to create challenges for students

• Students will be asked to fill the body of predicates

• Alloy’s solving engine will test student attempts against the lecturer oracle

• Will provide automatic feedback regarding correction of attempt

Logical challenges

• Alloy4Fun is best suited for simple challenges to train the formal
specification of properties

• Students are expected to only complete a predicate

• Secret checks compare student predicates with oracles behind the scenes

• Checks logical equivalence: student solution may be syntactically different

• Not expected to change the structure: would undermine automatic tests

Relational logic challenges
• Recipe for challenge N within a model:

• Specify the correct specification as predicate oracleN

• Mark oracleN as //SECRET

• Declare a header predicate specN for the student submission, leave it empty

• Annotate predicate specN with the description of the expected property

• Declare a check command specN that verifies the equivalence of oracleN and
specN (take care with the scope)

• Mark command specN as //SECRET

Relational challenge: private
//SECRET
pred oracle1 {
 ~adj = adj
}
pred spec1 {
 // the network is undirected

}
//SECRET
check spec1 {
 spec1 iff oracle1
} for 4

Relational challenge: public
pred spec1 {
 // the network is undirected

}

Relational challenge: public
pred spec1 {
 // the network is undirected
 all n : Node | n->n in adj
}

Improving challenge feedback

• Challenge check commands show a counter-example whenever the
submission and oracle are not equivalent

• May be due to under-specification, over-specification (or both)

• Determining which is the case from counter-examples is challenging for
students

• We can add extra information in the visualization to aid students

Improving challenge feedback
• Recipe for header:

• Declare an abstract singleton signature RejectedBy to represent the feedback

• Declare extensions of RejectedBy for the cases ThisShouldBeRejected and
ThisShouldBeAccepted

• Customize the visualization of RejectedBy atoms as seen fit

• Recipe for challenge N:

• Keep predicates oracleN and specN as before

• Add a precondition to command specN to only consider counter-examples where the
correct RejectedBy atom is present

Improving feedback: private
//SECRET
abstract one sig RejectedBy {}
//SECRET
sig ThisShouldBeRejected, ThisShouldBeAccepted extends RejectedBy {}

//SECRET
pred oracle1 {
 ~adj = adj
}
pred spec1 {
 // the network is undirected

}
//SECRET
check spec1 {
 (some ThisShouldBeRejected iff (spec1 and not oracle1)) implies
 (spec1 iff oracle1)
} for 4

Improving feedback: public
pred spec1 {
 // the network is undirected
 all n : Node | n->n in adj
}

Improving feedback: public
pred spec1 {
 // the network is undirected
 all n : Node | n->n in adj
}

Providing partial feedback

• The same strategy can be used to give feedback about challenges with
sub-specifications

• Or even check all challenges at once and have feedback about which one
is failing

Partial feedback: private

//SECRET
abstract sig Subspec {}
//SECRET
lone sig FailsSubspec1, FailsSubspec2 extends Subspec {}

Partial feedback: private
//SECRET
pred oracle2 {
 oracle2a and oracle2b }
//SECRET
pred oracle2a {
 all r:Router | some n1 , n2 : r.adj | n1 != n2 }
//SECRET
pred oracle2b {
 all r:Router | r not in r.adj }
//SECRET
check spec2 {
 { some ThisShouldBeRejected iff (spec2 and not oracle2)
 some FailsSubspec1 iff (spec2 and not oracle2a)
 some FailsSubspec2 iff (spec2 and not oracle2b)
 } implies (spec2 iff oracle2)
}

Partial feedback: public
pred spec2 {
 // 1) router nodes have more than one adjacent node

 // 2) router nodes are not adjacent to themselves
 no iden & adj :> Router }

Partial feedback: private

//SECRET
check allSpecs {
 let specs = spec1 and spec2
 { some ThisShouldBeRejected iff
 (() and not (oracle1 and oracle2))
 some FailsSubspec1 iff (spec1 and not oracle1)
 some FailsSubspec2 iff (spec2 and not oracle2)
 } implies
 ((spec1 and spec2) iff (oracle1 and oracle2))
}

Partial feedback: public

Incremental challenge assumptions

• When exercises have several challenges, students struggle to disregard
previously specified properties

• We found it best to just assume previous specifications to hold

• Assumed regardless of whether the student got them right, uses the
oracles

Incremental challenge assumptions
//SECRET
pred oracle3 {
 all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
 // the network is connected

}
//SECRET
check spec3 {
 spec3 iff oracle3
} for 4

Incremental challenge assumptions
pred spec3 {
 // the network is connected
 all n:Node | Node in n.*adj
}

Incremental challenge assumptions

• Recipe for challenge N:

• Keep predicates oracleN and specN as before

• Add a precondition to command specN to only consider counter-
examples where oracleI holds for all I < N

Incremental assumptions: private
//SECRET
pred oracle3 {
 all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
 // the network is connected

}
//SECRET
check spec3 {
 oracle1 implies (spec3 iff oracle3)
} for 4

Incremental assumptions: private
//SECRET
pred oracle3 {
 all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
 // the network is connected

}
//SECRET
check spec3 {
 { some ThisShouldBeRejected iff (spec3 and not oracle3)
 oracle1
 } implies
 (spec3 iff oracle3)
}

Incremental assumptions: public
pred spec3 {
 // the network is connected
 all n:Node | Node in n.*adj
}

Incremental assumptions: private
//SECRET
pred oracle3 {
 all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
 // the network is connected

}
//SECRET
check spec3 {
 { some ThisShouldBeRejected iff (spec3 and not oracle3)
 oracle1
 no Router
 } implies
 (spec3 iff oracle3)
}

Partial feedback: public
pred spec3 {
 // the network is connected
 all n:Node | Node in n.*adj
}

Improving maintainability

• In models with several challenges, commands can be difficult to maintain

• Cannot refactor out to predicates (arguments would be formulas and not
relations)

• Alloy supports let-macros, replaced directly during preprocessing

• No type-checking, use with care

Macro for simple challenges
//SECRET
let verify[s,o] {
 { some ThisShouldBeRejected iff (s and not o)
 no Subspec
 } implies (s iff o)
}

//SECRET
check spec1 {
 verify[spec1,oracle1]
}

Macro for simple challenges
//SECRET
let verifypre[p,s,o] {
 { some ThisShouldBeRejected iff (s and not o)
 no Subpsec
 p
 } implies (s iff o)
}

//SECRET
check spec3 {
 verifypre[oracle3 and no Router,spec3,oracle3]
}

Macro for partials

//SECRET
let verifypresub[p,s,o,s1,s2,s3] {
 { some ThisShouldBeRejected iff (s and not o)
 some FailsSubspec1 iff (s and not s1)
 some FailsSubspec2 iff (s and not s2)
 some FailsSubspec3 iff (s and not s3)
 p
 } implies (s iff o)
}

Macro for partials

//SECRET
check spec2 {
 verifypresub[no none,spec2,oracle2,oracle2a,oracle2b,no none]
}

//SECRET
check allSpecs {
 let oracles = spec1 and spec2 and spec3,
 specs = spec1 and spec2 and spec3 |
 verifypresub[no none,specs,oracles,oracle1,oracle2,oracle3]
}

Relational challenges

• Private view: http://alloy4fun.inesctec.pt/qCwrMjA9W7cuv4amm

• Public view: http://alloy4fun.inesctec.pt/mtf27hGfbwgdhxhZZ

http://alloy4fun.inesctec.pt/qCwrMjA9W7cuv4amm
http://alloy4fun.inesctec.pt/mtf27hGfbwgdhxhZZ

Temporal logic challenges

• Challenges for temporal logic are particularly difficult for students

• Struggle to ignore internals of events to focus on abstract properties over
traces

• To keep problems well-defined, two classes of challenges:

• Pure temporal logic reasoning over abstract traces

• Predicates relating two states encoding individual events

Concurrency models

• Control how events occur in the trace

• Interleaved execution: only one node acts at a time, global stutter if no
node acts

• True concurrency: all nodes may act at the same time, each node
stutters independently

• Must be made clear since expected properties depend on it

Trace property challenges

• Ask for temporal specifications over traces of abstract events

• Internals of events irrelevant: only focus on their occurrence

• Counter-examples simply show sequences of occurring events

Trace property challenges
• Create a mutable abstract Event for events occurring in each state

• Create sub-signatures of Event for each class of events

• Add parameters of events as mutable fields

• For each event M:

• Define a mutable signature EventM extending the respective Event signature

• Define predicate EventM to test the occurrence of event with given parameters, checks
the occurrence of event atom

• Define a fact Trace encoding the desired concurrency model

• Mark all signatures and predicates as //SECRET

• Describe the available event API through comments

• Hide everything from the visualization leaving only the events

Trace property challenges

• Recipe for challenge N within a model:

• Follow the same strategy as the relational logic challenges

• Take care for the scope of Event: depends on concurrency model

Trace challenges: interleaved
sig Message {}
//SECRET
var abstract sig Event {}
//SECRET
var abstract sig Action extends Event {
 var node : one Node,
 var msg : one Message }
//SECRET
var sig send, receive extends Action {}
//SECRET
var lone sig stutter extends Event {}
//SECRET
pred send[n : Node, m : Message] {
 some a : send | a.node = n and a.msg = m }
//SECRET
pred receive[n : Node, m : Message] {
 some a : receive | a.node = n and a.msg = m }
//SECRET
pred stutter {
 some stutter }

Trace challenges: interleaved

//SECRET
fact Trace {
 always one Event
}

/* Assume the existence of the following events, and that
 only one may happen at each state:
 pred send[n : Node, m : Message] {...}
 pred receive[n : Node, m : Message] {...}
 pred stutter {...} */

Trace challenges: public

Trace challenges: public

Trace challenges: interleaved
//SECRET
pred toracle1 {
 always stutter
}
pred temp1 {
 // nothing will ever happen

}
//SECRET
check temp1 {
 verify[temp1,toracle1]
} for 2 but 3 Event

Trace challenges: public
pred temp1 {
 // nothing will ever happen

}

Trace challenges: interleaved
//SECRET
pred toracle2 {
 all n : Node, m : Message |
 always (receive[n,m] implies before once some f : Node | send[f,m])
}
pred temp2 {
 // any received message must have been sent before

}
//SECRET
check temp2 {
 verify[temp2, toracle2]
} for 2 but 3 Event

Trace challenges: public
pred temp2 {
 // any received message must have been sent before
 all n : Node, m : Message |
 always (receive[n,m] implies before once some f : Node | send[f,m])
}

Trace challenges: public
pred temp2 {
 // any received message must have been sent before
 all n : Node, m : Message |
 always (receive[n,m] implies once some f : Node | send[f,m])
}

Trace challenges: interleaved

• Private view: http://alloy4fun.inesctec.pt/GxKTndgdDTxewzX8X

• Public view: http://alloy4fun.inesctec.pt/M65cdRJE4Jci2nnKY

http://alloy4fun.inesctec.pt/GxKTndgdDTxewzX8X
http://alloy4fun.inesctec.pt/M65cdRJE4Jci2nnKY

Trace challenges: concurrent
sig Message {}
//SECRET
var abstract sig Event {
 var node : one Node }
//SECRET
var abstract sig Action extends Event {
 var msg : one Message }
//SECRET
var sig send, receive extends Action {}
//SECRET
var lone sig stutter extends Event {}
//SECRET
pred send[n : Node, m : Message] {
 some a : send | a.node = n and a.msg = m }
//SECRET
pred receive[n : Node, m : Message] {
 some a : receive | a.node = n and a.msg = m }
//SECRET
pred stutter[n : Node] {
 some a : stutter | a.node = n }

Trace challenges: concurrent

//SECRET
fact Trace {
 always all n : Node | one node.n
}

/* Assume the existence of the following events, and that
 for each node one event happens at each state:
 pred send[n : Node, m : Message] {...}
 pred receive[n : Node, m : Message] {...}
 pred stutter[n : Node] {...} */

Trace challenges: public

Trace challenges: public

Trace challenges: concurrent
//SECRET
pred toracle1 {
 all n : Node | always stutter[n]
}
pred temp1 {
 // nothing will ever happen

}
//SECRET
check temp1 {
 verify[temp1,toracle1]
} for 2 but 6 Event

Trace challenges: public

Trace challenges: concurrent
//SECRET
pred toracle2 {
 all n : Node, m : Message |
 always (receive[n,m] implies before once some f : Node | send[f,m])
}
pred temp2 {
 // any received message must have been sent before

}
//SECRET
check temp2 {
 verify[temp2, toracle2]
} for 2 but 6 Event

Trace challenges: public
pred temp2 {
 // any received message must have been sent before
 all n : Node, m : Message |
 always (receive[n,m] implies before once some f : Node | send[f,m])
}

Trace challenges: public
pred temp2 {
 // any received message must have been sent before
 all n : Node, m : Message |
 always (receive[n,m] implies once some f : Node | send[f,m])
}

Trace challenges: concurrent

• Private view: http://alloy4fun.inesctec.pt/vEBcedmNSJqhA9kab

• Public view: http://alloy4fun.inesctec.pt/PZSCFT28pREZCQASX

http://alloy4fun.inesctec.pt/vEBcedmNSJqhA9kab
http://alloy4fun.inesctec.pt/PZSCFT28pREZCQASX

Event definition challenges

• Must now consider the internal mutable state of the system

• Contrast to trace challenges: check the specification of a single event

• Valid sequence of events not enforced: must specify an invariant
characterizing reachable states to avoid meaningless counter-examples

• Distinguished elements declared to represent parameters to help counter-
example interpretation

Event definition challenges
• Add internal mutable state to the system's elements

• Define a predicate inv that represents valid states of the system

• For each challenge for event M:

• Define the specification and oracle predicates as before, taking into
consideration concurrency model

• The check must now:

• Consider only pre-states where the invariant holds

• Declare singletons signatures for the arguments

• Force the event to occur for those singletons, and all others to stutter

• Restrict the steps scope to 2

Event definition challenges

enum State { Active, Inactive }
sig Node {
 adj : set Node,
 var inbox : set Message,
 var state : one State
}

pred inv {
 always all n : Node | n.state = Inactive implies no n.inbox
}

Event challenges: interleaved
//SECRET
pred receiveoracle[n : Node, m : Message] {
 n.state = Active
 inbox' = inbox + n->m
 state' = state
}
pred receive[n : Node, m : Message] {
 // add the message to the inbox if active

}
//SECRET
pred stutter {
 state’ = state
 inbox’ = inbox
}

Event challenges: interleaved

//SECRET
one sig n extends Node {}
//SECRET
one sig m extends Message {}
//SECRET
check receive {
 verifypre[inv,receive[n,m]receiveoracle[n,m]]
} for 3 but 2 steps

Event challenges: visualization
pred receive[n : Node, m : Message] {
 // add the message to the inbox if active
 n.state = Active
 n.inbox' = n.inbox + m
 n.state' = n.state }

Event challenges: visualization
pred receive[n : Node, m : Message] {
 // add the message to the inbox if active
 n.state = Active
 n.inbox' = n.inbox + m
 n.state' = n.state }

Event challenges: interleaved

• Private view: http://alloy4fun.inesctec.pt/jbdrBFtb6NibboKPE

• Public view: http://alloy4fun.inesctec.pt/SEYtemwhLRTAzLZEP

http://alloy4fun.inesctec.pt/jbdrBFtb6NibboKPE
http://alloy4fun.inesctec.pt/SEYtemwhLRTAzLZEP

Event challenges: concurrent
//SECRET
pred receiveoracle[n : Node, m : Message] {
 n.state = Active
 n.inbox' = n.inbox + m
 n.state' = n.state
}
pred receive[n : Node, m : Message] {
 // add the message to the inbox if active

}
//SECRET
pred stutter[n : Node] {
 n.state’ = n.state
 n.inbox’ = n.inbox
}

Event challenges: concurrent

//SECRET
one sig n extends Node {}
//SECRET
one sig m extends Message {}
//SECRET
check receive {
 verifypre[inv and all f : Node-n | stutter[f],receive[n,m],receiveoracle[n,m]]
} for 3 but 2 steps

Event challenges: visualization
pred receive[n : Node, m : Message] {
 // add the message to the inbox if active
 n.state = Active
 n.inbox' = n.inbox + m
 n.state’ = n.state }

Event challenges: concurrent

• Private view: http://alloy4fun.inesctec.pt/TYvixjj36NoW4GBtS

• Public view: http://alloy4fun.inesctec.pt/E4XajuEs5a2u4LLfy

http://alloy4fun.inesctec.pt/TYvixjj36NoW4GBtS
http://alloy4fun.inesctec.pt/E4XajuEs5a2u4LLfy

Analyzing results

Data collection
• Alloy4Fun collects (anonymous) information about all interactions

• Owners of a model with secrets can access all submissions to the public
permalink

• Useful for

• lecturers to keep track of progress during classes

• researchers to perform studies on formal specification

• Some tools provided to ease analysis of data

Data model
• Alloy4Fun organizes data in derivation trees

• Each node is an executed or shared model

• The parent is the previously registered state

• Shared models have a children for each access

• The root is the original model with secrets

• Each children of the root is a session, usually a
series of attempts by a participant

Share
public

Execute
spec1

Execute
spec1

Execute
spec1

Execute
spec2

Execute
spec1

Execute
spec2

Execute
spec2

Execute
error

Share
private

Share
public

Automatic statistics

• When accessing a private view of a model with secrets, some statistics
can be inspected for its derivation tree (

• Quick insights about submissions to the model

• “Challenges” automatically detected:

• check commands which call an empty predicate

Statistics: overview

Statistics: results over time

Statistics: sessions

Statistics: sessions

Statistics: errors

Statistics: warnings

Statistics: outcomes

Statistics: by challenge

Statistics: submission graph

• Groups together all syntactically similar submissions and transitions

• Quick interesting insights:

• Learning bottlenecks

• Common reasoning steps

• Popular correct solutions

• …

Statistics: submission graph

Local analysis

• When accessing a private view of a model with secrets, the derivation tree
for that challenge can be downloaded)

• JSON file of model derivation tree from original

• Java library provided to ease some tasks (such as the ones for online
statistics)

Data model
• Each model contains the following information:

• _id: a unique id for the entry

• time: the timestamp of its creation

• derivationOf: the parent entry

• original: the first ancestor with secrets (always the same within a challenge)

• code: the complete code of the model (excluding the secrets defined in the original entry)

• Additionally for executed models:

• sat: whether the command was satisfiable (counter-example found for checks), or -1 when error thrown

• cmd_i: the index of the executed command

• cmd_n: the name of the executed command for successful executions (no error)

• cmd_c: whether the command was a check for successful executions (no error)

• msg: the error or warning message, if any

• Additionally for shared models:

• theme: the visualization theme

Metrics library

• Java library to support the analysis of Alloy4Fun datasets

• The statistics shown previously (except graph)

• Provides derivation tree with parsed and analyzed entries

• Supports definition metric suites:

• Methods annotated with @MetricMethod automatically executed

• Parameter annotations to be executed for all desirable entries

Metrics library
• Entry points:

• @ForAllSessions: run for all sessions

• @ForAllModels: run for model entries

• @ForAllExecutions: run for all execution entries

• @ForAllShares: run for share entries

• @ForAllErrors: run for all found errors

• @ForAllSolutions: run for all solutions (if re-execution enabled)

Metric example

@MetricMethod(rule = "Errors by type", description = "The number of
errors by normalized message.")
public static Object[] errorMessages(@ForAllErrors Err err) {
 return new Object[] { MetricRunner.normUpMessages(err.msg) };
}

Metric example

@MetricMethod(rule = "Entries over time", description = "The number
of model entries by date, classified by type and result.")
public static Object[] resultsTime(@ForAllModels A4FModel entry) {
 LocalDate date = entry.time.toLocalDate();
 if (entry instanceof A4FExecution)
 return new Object[] { date, ((A4FExecution) entry).result() };
 else
 return new Object[] { date, "SHARE" };
}

Metric example

@MetricMethod(rule = "Size in 10s of nodes", description = "The number of executions, for each
challenge, by the size AST.")
public static Object[] nodeSize10(@A4FDB A4FDatabase db, @ForAllExecutions A4FExecution exe) {
 if (!db.challengeLabels().contains(exe.cmd_name))
 return null;
 AggregateVisitor<Integer> qnt =
 new AggregateVisitor<Integer>((k, l) -> k + l + 1, 1, db.challengPreds()) { };
 return new Object[] { exe.cmd_name, exe.command().formula.accept(qnt) / 10, exe.result() };
}

Running catalog

java -cp […] pt.haslab.alloy4fun.metrics.MetricHTMLPrinter \
 models.json \
 model_id \
 pt.haslab.alloy4fun.metrics.BasicCatalog

Alloy4Fun dataset
• We have released the Alloy4Fun dataset from our classes in Zenodo

https://zenodo.org/record/4676413

• (Most recent 2021, latest years still pending, ~300k models)

• Can be, and has already been, used to support research

• E.g., to evaluate model repair, Brida et al, ICSE 2021

• You can also run your own version of Alloy4Fun

https://haslab.github.io/Alloy4Fun/

https://zenodo.org/record/4676413
https://haslab.github.io/Alloy4Fun/

