Teaching Alloy with
Alloy4Fun

Nuno Macedo and Alcino Cunha
ABZ’23

Who are we?

Teaching Alloy for several years (besides research)

e Alcino Cunha, University of Minho, 15 years

n
N~/ \/—\,

* Nuno Macedo, University of Porto, 5 years "1

Mandatory (>100 students) and optional (<20
students) classes

[BAPORTO

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Last 3 years with Alloy4Fun

Led the development by MSc students

Program

* Overview of the Alloy4Fun platform
* Defining logical challenges in Alloy4Fun

* Analyzing student submission data

Writing and executing models

Alloy4Fun overview

e \Web-platform to specity, analyze and share Alloy models
 Doesn’t support all features of the Analyzer, best suited for simple models
 Additional features allow the creation of challenges to be used in classes:
* ADllity to share models and instances, accompanied by themes
* Ability to define secrets in the model, allows the definition of exercises

* All data is collected, to monitor progress and identify bottlenecks

Alloy4Fun overview

Alloy4Fun

module network

some sig Node {
adj : set Node,

}

sig Router in Node {}

run good example {
all n : Node | some n.adj
} for exactly 3 Node

ook WN K

run bad example {
no Node
} for 3 Node

Command : run bad example Vv

> & o 3

Execute Share model Statistics Derivations

Model execution

P launches the analysis of a command likewise the Analyzer
If multiple commands defined, combobox allows selection
If satisfiable, an instance/counter-example is graphically shown

Execution disabled until changes are made (or other command selected)

Model execution

Command : | run bad example V¥
’ 00 lllll
Execute Share model Statistics Derivations

No instance found. run bad _example may be inconsistent.

Instance visualization

Instance found. run good_example is consistent.

@ mﬁ% .

Previous instance Next instance

&

Share instance

Instance visualization

e |f the instance is a trace, = and € allow state navigation (o for last state)

» Single state shown at a time

* Current state identified in bottom-right corner

Alloy4Fun overview

Alloy4Fun

module network

abstract sig State {}
one sig Active, Inactive extends State {}
sig Message {}

some sig Node {
adj : set Node,
var inbox : set Message,
var state : one State

oIk WwWwh -

}

sig Router in Node {}

run good example {
all n : Node | some n.adj
inbox' != inbox

} for exactly 2 Node, 2 Message

run bad_example {
no Node
21|} for 3 Node, 2 Message

Command : [run good example v

> & o 3

Execute Share model Statistics Derivations

Instance visualization

Instance visualization

Customizing visualization

Likewise the Analyzer, visualization can be customized
Accessible by right-clicking elements in the visualizer
Not all the options available, only essential ones

Layout not as strict, alternative algorithms and manual positioning

Customizing visualization

Node2
(this/Router)

/)
)
)
70
< adj

Instance enumeration

* Only basic enumeration is provided, M for a new instance

e Can navigate back to previously seen instances |4

Sharing models and instances

Sharing models

» The current state of the model can be shared through a permalink &’
* Visualization customization shared alongside the model

* Useful when interacting with students to discuss attempts

Sharing models

P

Execute Share model Statistics Derivations

& o 3

public link

http://alloy4fun.inesctec.pt/zqdPWk6gpPyKaQvgG

P

Copy to clipboard

Sharing instances

e |nstances can also be shared with a similar mechanism @’

* Visualization is fully preserved, including the position of the elements

Sharing instances

&

Share instance

Managing links

* Alloy4Fun is completely anonymous by design
 No accounts for users to track their permalinks

* Users must maintain their permalinks through external means

Model secrets

Secret annotations

e Secrets in a model are introduced with annotation //SECRET
* Will make succeeding paragraph a secret
* Declaration of signature, predicate, command, ...

 Comments, retro-compatible with Analyzer

Public and private views

e Once secrets are introduced in the model, there are two views available:
* Private: shows the complete model with secrets
* Public: hides the secret declarations
* They can still be used if name is known
» Secret signatures still shown (unless hidden by theme)
* Secret commands can be selected for execution

 Different permalinks @ generated for models with secrets

Public and private views

public link

http://alloy4fun.inesctec.pt/kNnE7E2BzeJjdf8Ly

F
=

Ej Copy to clipboard

¥

.
-1
A

private link

http://alloy4fun.inesctec.pt/dXkFAKkxFMzEprwfiP

Ej Copy to clipboard

Private view

module network

some sig Node {
adj : set Node,
}

sig Router in Node {}

/ / SECRET
run good example {

all n : Node | some n.adj
} for exactly 3 Node

oo WwWN

//SECRET

run bad example {
no Node

} for 3 Node

Command : 'run good example v

> & o 3

Execute Share model Statistics Derivations

Public view

module network

some sig Node ({
adj : set Node,
}

sig Router in Node {}

1
2
3
4
5
6
7
8

Command : [run good example Vv

> & o 3

Execute Share model Statistics Derivations

Public and private views

* |Interface changes slightly
 Public view: W warns user of hidden paragraphs

e Private view: I and &k enable the extraction of submission statistics

Evolving views

Public views can be changed and re-shared, preserving original secrets
But secrets only inherited from a single model

Introducing secrets in a public view breaks the connection with the
original

When evolving a private view, shared links will still point to the original,
must re-generate

Defining challenges

Defining challenges

Secret paragraphs can be used to create challenges for students
Students will be asked to fill the body of predicates
Alloy’s solving engine will test student attempts against the lecturer oracle

Will provide automatic feedback regarding correction of attempt

Logical challenges

Alloy4Fun is best suited for simple challenges to train the formal
specification of properties

Students are expected to only complete a predicate
Secret checks compare student predicates with oracles behind the scenes
Checks logical equivalence: student solution may be syntactically different

Not expected to change the structure: would undermine automatic tests

Relational logic challenges

* Recipe for challenge N within a model:
e Specify the correct specification as predicate oracleN
e Mark oracleN as //SECRET
 Declare a header predicate specN for the student submission, leave it empty
 Annotate predicate specN with the description of the expected property

 Declare a check command specN that verifies the equivalence of oracleN and
specN (take care with the scope)

e Mark command specN as //SECRET

Relational challenge: private

//SECRET
pred oraclel {
~adj] = adj
}
pred specl {
// the network is undirected

}
//SECRET

check specl {

specl iff oraclel
} for 4

Relational challenge: public

pred specl {
// the network is undirected

}

Command :
& Un ||||I
E t Share model Statistics

Relational challenge: public

pred specl {
// the network i1is undirected
all n : Node | n->n in adj

}

Node?2
(this/Router)

Node1
(this/Router)

Improving challenge feedback

Challenge check commands show a counter-example whenever the
submission and oracle are not equivalent

May be due to under-specification, over-specification (or both)

Determining which is the case from counter-examples is challenging for
students

We can add extra information in the visualization to aid students

Improving challenge feedback

* Recipe for header:

* Declare an abstract singleton signature RejectedBy to represent the feedback

* Declare extensions of RejectedBy for the cases ThisShouldBeRejected and
ThisShouldBeAccepted

 Customize the visualization of RejectedBy atoms as seen fit
* Recipe for challenge N.:
 Keep predicates oracleN and specN as before

 Add a precondition to command specN to only consider counter-examples where the
correct RejectedBy atom is present

Improving feedback: private

//SECRET
abstract one sig RejectedBy {}

//SECRET
sig ThisShouldBeRejected, ThisShouldBeAccepted extends RejectedBy {}

//SECRET

pred oraclel {
~ad] = adj

}

pred specl {

// the network is undirected

}
//SECRET

check specl {
(some ThisShouldBeRejected iff (specl and not oraclel)) implies

(specl iff oraclel)
} for 4

Improving feedback: public

pred specl {
// the network is undirected

all n : Node | n->n in adj

Counter-example found. check specl is invalid.

ThisShouldBeAccepted % % [(thi':/%’oel}ter)}

g i
< Node2
B (this/Router)
%

Improving feedback: public

pred specl {
// the network is undirected
all n : Node | n->n in adj

Counter-example found. check specl is invalid.

ThisShouldBeRejected

y o'

(ﬁ’(Node2 }

(this/Router)

Providing partial feedback

 The same strategy can be used to give feedback about challenges with
sub-specifications

* Or even check all challenges at once and have feedback about which one
s failing

Partial feedback: private

//SECRET

abstract sig Subspec {}

//SECRET

lone sig FaililsSubspecl, FailsSubspec2 extends Subspec {}

Partial feedback: private

//SECRET
pred oracle2 {

oracle2a and oracle2b }
//SECRET
pred oracle2a {

all r:Router | some nl , n2 : r.adj | nl != n2 }
//SECRET
pred oracle2b {

all r:Router | r not in r.adj }
//SECRET
check spec2 {

{ some ThisShouldBeRejected iff (spec2 and not oracle2)
some FailsSubspecl 1ff (spec2 and not oraclela)
some FailsSubspec2 1ff (spec2 and not oracle2b)

} implies (spec2 iff oracle2)

Partial feedback:

pred spec2 {
// 1) router nodes have more than one adjacent node

// 2) router nodes are not adjacent to themselves
no iden & adj :> Router }

Counter-example found. check spec2 is invalid.

ThisShouldBeRejected

nnn

Node1
(this/Router)

Partial feedback: private

//SECRET
check allSpecs {
let specs = specl and spec?

{ some ThisShouldBeRejected iff
(() and not (oraclel and oracle2?))

some FailsSubspecl iff (specl and not oraclel)

some FaillsSubspec2 iff (spec2 and not oracle2)
} implies

((specl and spec2) 1ff (oraclel and oracle2))

Partial feedback: public

Counter-example found. check allSpecs is invalid.

lll

FailsSubspec FailsSubspec?2 ThisShouldBeRejected

Toosssssnnsnannenensl asaraesssssesssessaessssassesssnastesnnnsnsnnnnnnannnnsnnannst

Node1] -
(this/Router)J adj

< Node0
(this/Router)

Incremental challenge assumptions

 When exercises have several challenges, students struggle to disregard
previously specified properties

 We found it best to just assume previous specifications to hold

 Assumed regardless of whether the student got them right, uses the
oracles

Incremental challenge assumptions

//SECRET
pred oracle3d {
all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
// the network is connected

}
//SECRET

check spec3 {

spec3 iff oracle3
} for 4

Incremental challenge assumptions

pred spec3 {
// the network i1is connected
all n:Node | Node in n.*adj

}

NodeO
(this/Router)

7\

[(thi':/oéi:Jter)] ThisShouldBeAccepted

Incremental challenge assumptions

* Recipe for challenge N
 Keep predicates oracleN and specN as before

 Add a precondition to command specN to only consider counter-
examples where oraclelI holds forall/ <N

Incremental assumptions: private

//SECRET
pred oracle3d {
all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
// the network is connected

}
//SECRET

check spec3 {

oraclel implies (spec3 1iff oracle3)
} for 4

Incremental assumptions: private

//SECRET
pred oracle3 {
all n : Node | Node in n.*(~adj+adj)
}
pred spec3 {
// the network is connected

}
//SECRET

check spec3 {
{ some ThisShouldBeRejected 1ff (spec3 and not oracle3l)
oraclel
} implies
(spec3 1ff oracle3l)

Incremental assumptions: public

pred spec3 {
// the network i1is connected
all n:Node | Node in n.*adj

}

No counter-example found. check spec3 may be valid.

Incremental assumptions: private

//SECRET

pred oracle3 {
all n : Node | Node in n.*(~adj+adj)

}
pred spec3 {

// the network 1is connected

}
//SECRET

check spec3 {
{ some ThisShouldBeRejected 1ff (spec3 and not oracle3l)

oraclel
no Router
} implies
(spec3 iff oracle3l)

Partial feedback: public

pred spec3 {
// the network i1is connected
all n:Node | Node in n.*adj

}

Counter-example found. check spec3 is invalid.

ThisShouldBeAccepted

Improving maintainability

In models with several challenges, commands can be difficult to maintain

Cannot refactor out to predicates (arguments would be formulas and not
relations)

Alloy supports 1let-macros, replaced directly during preprocessing

No type-checking, use with care

Macro for simple challenges

//SECRET
let verify[s,o] {
{ some ThisShouldBeRejected iff (s and not 0)
no Subspec
} implies (s 1ff o)

}

//SECRET
check specl {
verify[specl,oraclel]

}

Macro for simple challenges

//SECRET
let verifypre[p,s,0] {
{ some ThisShouldBeRejected 1ff (s and not o)
no Subpsec
P
} implies (s 1ff 0O)

}

//SECRET
check spec3 {
verifypre[oracle3 and no Router,spec3,oracle3]

}

Macro for partials

//SECRET
let verifypresub[p,s,0,sl,s2,s3] {
{ some ThisShouldBeRejected i1ff (s and not 0)
some FailsSubspecl 1ff (s and not sl)
some FailsSubspec2 iff (s and not s2)
some FailsSubspec3 iff (s and not s3)

P
} implies (s iff o)

Macro for partials

//SECRET
check spec2 {
verifypresub[no none,spec2,oracle2,oracle2a,oracle2b,no none]

}

//SECRET
check allSpecs {
let oracles = specl and spec2 and spec3,
specs = specl and spec2 and spec3 |

verifypresub[no none,specs,oracles,oraclel,oracle2,oracle3]

}

Relational challenges

http://alloy4fun.inesctec.pt/qCwrMjA9W7cuv4amm
http://alloy4fun.inesctec.pt/mtf27hGfbwgdhxhZZ

Temporal logic challenges

* Challenges for temporal logic are particularly difficult for students

e Struggle to ignore internals of events to focus on abstract properties over
traces

* To keep problems well-defined, two classes of challenges:
* Pure temporal logic reasoning over abstract traces

* Predicates relating two states encoding individual events

Concurrency models

e Control how events occur in the trace

* [nterleaved execution: only one node acts at a time, global stutter if no
node acts

* Jrue concurrency: all nodes may act at the same time, each node
stutters independently

 Must be made clear since expected properties depend on it

Trace property challenges

 Ask for temporal specifications over traces of abstract events
* Internals of events irrelevant: only focus on their occurrence

 Counter-examples simply show sequences of occurring events

Trace property challenges

Create a mutable abstract Event for events occurring in each state

Create sub-signatures of Event for each class of events

Add parameters of events as mutable fields

For each event M:

* Define a mutable signature EventM extending the respective Event signature

* Define predicate EventM to test the occurrence of event with given parameters, checks
the occurrence of event atom

Define a fact Trace encoding the desired concurrency model

Mark all signatures and predicates as //SECRET
Describe the available event APl through comments

Hide everything from the visualization leaving only the events

Trace property challenges

* Recipe for challenge N within a model:
* Follow the same strategy as the relational logic challenges

* Take care for the scope of Event: depends on concurrency model

Trace challenges: interleaved

sig Message {}

//SECRET

var abstract sig Event {}

//SECRET

var abstract sig Action extends Event {
var node : one Node,

var msg : one Message }
//SECRET
var sig send, receive extends Action {}
//SECRET
var lone sig stutter extends Event {}
//SECRET

pred send[n : Node, m : Message] {

some a : send | a.node = n and a.msg = m }
//SECRET
pred receive[n : Node, m : Message] {

some a : receive | a.node = n and a.msg = m }
//SECRET
pred stutter {

some stutter }

Trace challenges: interleaved

//SECRET
fact Trace {
always one Event

}

/* Assume the existence of the following events, and that
only one may happen at each state:
pred send[n : Node, m : Message] {...}
pred receive[n : Node, m : Message] {...}
pred stutter {...} */

Trace challenges: public

- ThisShouldBeAccepted

Trace challenges: public

Instance found. run good_trace is consistent.

receivel
msg: Message
node: Node1

é ThisShouldBeAccepted [

Trace challenges: interleaved

//SECRET
pred toraclel ({
always stutter
}
pred templ {
// nothing will ever happen

}
//SECRET

check templ {
verify[templ,toraclel]
} for 2 but 3 Event

Trace challenges: public

pred templ {
// nothing will ever happen

}

1~ThisShouldBeRejected '

Trace challenges: interleaved

//SECRET
pred toracle2 {
all n : Node, m : Message |
always (receive[n,m] implies before once some f : Node | send[f,m])
}
pred temp2 {
// any received message must have been sent before

}
//SECRET

check temp2 {
verify[temp2, toracle2]
} for 2 but 3 Event

Trace challenges: public

pred temp2 {
// any received message must have been sent before
all n : Node, m : Message |
always (receive[n,m] implies before once some f : Node | send[f,m])

No counter-example found. check temp2 may be valid.

Trace challenges: public

pred temp2 {
// any received message must have been sent before
all n : Node, m : Message |
always (receive[n,m] implies once some f : Node | send[f,m])

No counter-example found. check temp2 may be valid.

Trace challenges: interleaved

* Private view: http://alloy4fun.inesctec.pt/GxKThdgdD TxewzX8X [

* Public view: http://alloy4fun.inesctec.pt/M65cdRJE4Jci2nnKY

http://alloy4fun.inesctec.pt/GxKTndgdDTxewzX8X
http://alloy4fun.inesctec.pt/M65cdRJE4Jci2nnKY

Trace challenges: concurrent

sig Message {}

//SECRET

var abstract sig Event {
var node : one Node }

//SECRET
var abstract sig Action extends Event {
var msg : one Message }

//SECRET

var sig send, receive extends Action {}
//SECRET

var lone sig stutter extends Event {}
//SECRET

pred send[n : Node, m : Message] {

some a : send | a.node = n and a.msg = m }
//SECRET
pred receive[n : Node, m : Message] {

some a : receive | a.node = n and a.msg = m }
//SECRET
pred stutter[n : Node] {

some a : stutter | a.node = n }

Trace challenges: concurrent

//SECRET
fact Trace {
always all n : Node | one node.n

}

/* Assume the existence of the following events, and that
for each node one event happens at each state:
pred send[n : Node, m : Message] {...}
pred receive[n : Node, m : Message] {...}
pred stutter[n : Node] {...} */

Trace challenges: public

Trace challenges: public

Instance found. run good_trace is consistent.

receivel
é msg: Message ThisShouldBeAccepted

node: Node1

Trace challenges: concurrent

//SECRET
pred toraclel ({
all n : Node | always stutter[n]
}
pred templ {
// nothing will ever happen

}
//SECRET

check templ {
verify[templ,toraclel]
} for 2 but 6 Event

Trace challenges: public

Trace challenges: concurrent

//SECRET
pred toracle2 {
all n : Node, m : Message |
always (receive[n,m] implies before once some f : Node | send[f,m])
}
pred temp2 {
// any received message must have been sent before

}
//SECRET

check temp2 {
verify[temp2, toracle2]
} for 2 but 6 Event

Trace challenges: public

pred temp2 {
// any received message must have been sent before
all n : Node, m : Message |
always (receive[n,m] implies before once some f : Node | send[f,m])

No counter-example found. check temp2 may be valid.

Trace challenges: public

pred temp2 {
// any received message must have been sent before
all n : Node, m : Message |
always (receive[n,m] implies once some f : Node | send[f,m])

} Counter-example found. check temp2 is invalid.

j

1 receive0
ThisShouldBeRejected | msg: Message
node: NodeO

stutterO
node: Nodef1

.

Trace challenges: concurrent

* Private view: http://alloy4fun.inesctec.pt/vEBcedmNSJghA9kab

* Public view: http://alloy4fun.inesctec.pt/PZSCFT28pREZCQASX

http://alloy4fun.inesctec.pt/vEBcedmNSJqhA9kab
http://alloy4fun.inesctec.pt/PZSCFT28pREZCQASX

Event definition challenges

Must now consider the internal mutable state of the system
Contrast to trace challenges: check the specification of a single event

Valid sequence of events not enforced: must specify an invariant
characterizing reachable states to avoid meaningless counter-examples

Distinguished elements declared to represent parameters to help counter-
example interpretation

Event definition challenges

 Add internal mutable state to the system's elements
 Define a predicate inv that represents valid states of the system
 For each challenge for event M:

* Define the specification and oracle predicates as before, taking into
consideration concurrency model

 The check must now:
 Consider only pre-states where the invariant holds
* Declare singletons signatures for the arguments
* Force the event to occur for those singletons, and all others to stutter

e Restrict the steps scope to 2

Event definition challenges

enum State { Active, Inactive }
sig Node {

adj : set Node,

var 1nbox : set Message,

var state : one State

}

pred inv {
always all n : Node | n.state = Inactive implies no n.inbox

}

Event challenges: interleaved

//SECRET
pred receiveoracle[n : Node, m : Message] {
n.state = Active
i1nbox' inbox + n->m
state' = state
}
pred receive[n : Node, m : Message] {
// add the message to the inbox if active

}

//SECRET

pred stutter {
state’ = state
inbox’ = 1inbox

Event challenges: interleaved

//SECRET

one sig n extends Node {}

//SECRET

one sig m extends Message {}

//SECRET

check receive {
verifypre[inv,recelive[n,m]receiveoracle[n,m]]

} for 3 but 2 steps

Event challenges: visualization

pred receive[n : Node, m : Message] {
// add the message to the inbox if active
n.state = Active
n.inbox' = n.inbox + m
n.state' = n.state }

Counter-example found. check receive is invalid.

ThlsShouIdBeRejected

* ?

N\
Node1
(this/Router)
state: Active

Event challenges: visualization

pred receive[n : Node, m : Message] {
// add the message to the inbox if active
n.state = Active
n.inbox' = n.inbox + m
n.state' = n.state }

Counter-example found. check receive is invalid.

ThisShouldBeRejected

//

Node1
(this/Router)

6

state: Active

™)

Event challenges: interleaved

http://alloy4fun.inesctec.pt/jbdrBFtb6NibboKPE
http://alloy4fun.inesctec.pt/SEYtemwhLRTAzLZEP

Event challenges: concurrent

//SECRET
pred receiveoracle[n : Node, m : Message] {
n.state = Active
n.inbox' = n.inbox + m
n.state' = n.state
}
pred receive[n : Node, m : Message] {
// add the message to the inbox if active

}

//SECRET

pred stutter[n : Node] {
n.state’ = n.state
n.inbox’ = n.inbox

Event challenges: concurrent

//SECRET
one sig n extends Node {}
//SECRET
one sig m extends Message {}
//SECRET
check receive {
verifypre[inv and all f : Node-n | stutter[f],receive[n,m],receiveoracle[n,m]]
} for 3 but 2 steps

Event challenges: visualization

pred receive[n : Node, m : Message] {
// add the message to the inbox if active
n.state = Active
n.inbox' = n.inbox + m
n.state’ = n.state }

No counter-example found. check receive may be valid.

Event challenges: concurrent

A0
5
!;.ﬂi;:

ey
l
i [a]

- -.-‘

Ay

oy oy By Y e "
, ll-‘l - =t k= &
el | FoulieH
&
o

[m].:
| i

* Private view: http://alloy4fun.inesctec.pt/TYVixjj36NoW4GBtS

0

* Public view: http://alloy4fun.inesctec.pt/E4XajuEs5a2u4l Lty

e

5
-
=L

oy
: :'_.-:E.r

http://alloy4fun.inesctec.pt/TYvixjj36NoW4GBtS
http://alloy4fun.inesctec.pt/E4XajuEs5a2u4LLfy

Analyzing results

Data collection

* Alloy4Fun collects (anonymous) information about all interactions

 Owners of a model with secrets can access all submissions to the public
permalink

e Useful for

» |ecturers to keep track of progress during classes
* researchers to perform studies on formal specification

 Some tools provided to ease analysis of data

Data model

Alloy4dFun organizes data in derivation trees Share

private

Each node Is an executed or shared model Execute

error

The parent is the previously registered state Execute

specl

Shared models have a children for each access

The root is the original model with secrets Execute

spec?2

Each children of the root is a session, usually a

Execute Execute

series of attempts by a participant specl [spec2

Automatic statistics

 \When accessing a private view of a model with secrets, some statistics
can be inspected for its derivation tree |l

* Quick insights about submissions to the model
 “Challenges” automatically detected:

 check commands which call an empty predicate

Statistics: overview

Challenge name
sub-challenges

Total sessions @

Average session @

Sessions all solved ©

Total executions ©@

Sat executions @

Error executions @

Total warnings @

Sat executions w/ warnings ©@
Number of shared sessions @
Shared models ©

Number of iterations @

courses
i 3

295
20.66
7
6157
2458
1991
1
365
48
62

0

Extraction time 2023-05-26T15:43:09.109
Metric catalog Simple online metrics
Longest session @ 207

Average % unsatisfiable ©@ 0.33

Average length all solved © 68.43

Challenge executions @ 4164

Unsat executions @ 1708

Compile-time errors ©@ 1940

Unsat executions w/ warnings @48
Error executions w/ warnings @20
Total shares ©@ 65
Shared instances © 3
Average iterations @ 0

lme

: results over t

Statistics

time

Entries over

700

600

500

400

SAT

ERROR
SHARE
UNSAT

300

200

100

Statistics: sessions

Sessions by # solved challenges ©

140

120

100

80

60

40

20

10

11

12

13

14

15

Statistics: sessions

Sessions by length ©@

100
90
80
70
60
50
40
30
20

10

AR m‘ﬁ?h)ﬁ ?,

iRl

ﬁiy‘ﬁ“iu

».

IS AN } = 'A\
%%%%%%%%%

errors

Statistics

400
350
300
250
200
150
100

50

Errors by type ©

warnings

Statistics

Warnings by type ©

300

250

200

150

100

50

Statistics: outcomes

Execution results by command ©@

400

350

300

250

200 SAT
UNSAT

150

100

50

inv100K inv110K inv120K invi30K inv140K inv150K inv10OK inv20K inv3OK inv40OK invbOK inveOK inv7OK invBOK invOOK run$1

Statistics: by challenge

Size in 10s of nodes G

inv100K inv11O0K invl20K | | inv130K inv140K inv150K inv1OK inv20K inv30K inv40K inv50K inv60OK inv70K inv80K inv90K

300
250

200

150 UNSAT
SAT

100

50

Statistics: submission graph

* Groups together all syntactically similar submissions and transitions
e Quick interesting insights:

* Learning bottlenecks

« Common reasoning steps

 Popular correct solutions

Statistics: submission graph

; - n raph o
. . inV13OK :

Local analysis

 \When accessing a private view of a model with secrets, the derivation tree
for that challenge can be downloaded &

 JSON file of model derivation tree from original

e Java library provided to ease some tasks (such as the ones for online
statistics)

Data model

* Each model contains the following information:
* _id: a unique id for the entry
* time: the timestamp of its creation
* derivationOf: the parent entry
e original: the first ancestor with secrets (always the same within a challenge)
* code: the complete code of the model (excluding the secrets defined in the original entry)
* Additionally for executed models:
e sat: whether the command was satisfiable (counter-example found for checks), or -1 when error thrown
* cmd_i: the index of the executed command
 cmd_n: the name of the executed command for successful executions (no error)
 cmd_c: whether the command was a check for successful executions (no error)
* msg: the error or warning message, if any
* Additionally for shared models:

e theme: the visualization theme

Metrics library

e Java library to support the analysis of Alloy4Fun datasets
* The statistics shown previously (except graph)
* Provides derivation tree with parsed and analyzed entries
e Supports definition metric suites:
 Methods annotated with @MetricMethod automatically executed

e Parameter annotations to be executed for all desirable entries

Metrics library

* Entry points:
® dForAllSessions. run for all sessions
e dForAllModels: run for model entries
® dForAllExecutions: run for all execution entries
e dForAllShares: run for share entries
e drFrorAllErrors: run for all found errors

e dForAllSolutions: run for all solutions (if re-execution enabled)

Metric example

@MetricMethod(rule = "Errors by type'", description = "The number of
errors by normalized message.")

public static Object[] errorMessages((@ForAllErrors Err err) {
return new Object[] { MetricRunner.normUpMessages(err.msqg) };

Metric example

@MetricMethod(rule = "Entries over time", description = "The number
of model entries by date, classified by type and result.")

public static Object[] resultsTime(@ForAllModels A4FModel entry) {
LocalDate date = entry.time.tolLocalDate();
if (entry instanceof A4FExecution)
return new Object[] { date, ((A4FExecution) entry).result() };
else
return new Object[] { date, "SHARE" };

Metric example

@MetricMethod(rule = "Size 1n 10s of nodes", description = "The number of executions, for each
challenge, by the size AST.")

public static Object[] nodeSizelO(@A4FDB A4FDatabase db, @ForAllExecutions A4FExecution exe) {
if (!db.challengelLabels().contains(exe.cmd name))
return null;
AggregateVisitor<Integer> qgnt =
new AggregateVisitor<Integer>((k, 1) -> k + 1 + 1, 1, db.challengPreds()) { };
return new Object[] { exe.cmd name, exe.command().formula.accept(qnt) / 10, exe.result() };

Running catalog

java -cp [..] pt.haslab.alloy4fun.metrics.MetricHTMLPrinter \
models.json \
model id \
pt.haslab.alloy4fun.metrics.BasicCatalog

Alloy4Fun dataset

We have released the Alloy4Fun dataset from our classes in Zenodo

https://zenodo.org/record/4676413

(Most recent 2021, latest years still pending, ~300k models)
Can be, and has already been, used to support research

* E.g., to evaluate model repair, Brida et al, ICSE 2021

You can also run your own version of Alloy4Fun

https://haslab.qgithub.io/Alloy4Fun/

https://zenodo.org/record/4676413
https://haslab.github.io/Alloy4Fun/

