
Exploiting Partial Knowledge
for Efficient Model Analysis

Nuno Macedo Alcino Cunha Eduardo Pessoa
Universidade do Minho & INESC TEC, Portugal

ATVA 2017, Pune, India

Model Finding

● Model finders automatically generate models within a bounded search space
that satisfy a certain constraint

● Increasingly useful for model verification and validation on early software
design stages

● Can be used directly by the end user

● But are typically at the backend of other frameworks with higher-level
specification languages

● Effective due to the advancement of the underlying solvers

Kodkod

● Kodkod is relational model finder (Torlak & Jackson, 2007)

● In Kodkod a model finding problem is represented by:

○ A universe of atoms

○ A set of relations restricted by bounds

■ Atom tuples that must and may belong

○ A relational formula that must hold

● A solution is a binding for each relational variable

● Problems are solved by off-the-shelf SAT solvers

● Efficient iteration of instances/counter-examples through incremental SAT
solving

Model Finding Scenario

All relations and constraints are solved in an “amalgamated” manner

Lower bounds define partial instances, upper bounds (usually) typing restrictions

Model Finding Scenario

Solving assigns a concrete set of elements to each relation

Every (non-symmetric) solution can be inspected

Model Finding Scenario

Solving assigns a concrete set of elements to each relation

Every (non-symmetric) solution can be inspected

Exploiting Partial Knowledge

● Bounds allow users to express partial knowledge that could not be otherwise
passed to the solvers

○ Can refer to concrete atoms

● These have proven to largely improve the performance of model finding, as
they restrict the search space

● However, certain knowledge cannot be specified in bounds and must
encoded in the constraint

○ Namely, relationships between the various relations

● This work explores this idea through the support for symbolic bounds

Model Finding Scenario Revisited

Symbolic bounds entail a dependency of B on A and C

The constraint can be simplified

Model Finding Scenario Revisited

The problem can be decomposed based on the detected dependencies

Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds

The search space for B is tighter

Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds

The search space for B is tighter

Model Finding Scenario Revisited

Not every partial solution leads to a complete solution

May potentially need to analyse every candidate

Decomposed Model Finding

Symbolic Bounds

● Regular bounds cannot encode such relationships: they refer only to concrete
atom tuples

● We extend model finding to support symbolic bounds, arbitrary relational
expressions that may refer to other relations

○ Can be evaluated efficiently

● If dependencies are constant, the bounds become tighter and the constraint
may be removed from the problem

● Reduces the complexity of constraints

● More importantly, it can be exploited in a decomposed solving strategy

Symbolic Bounds

U = {R1,R2,K1,K2,G1,G2,T1,T2}

R = Time : [{T1,T2},{T1,T2}]
 Key : [{K1,K2},{K1,K2}]
 Room : [{},{R1,R2}]
 Guest : [{},{G1,G2}]
 keys : [{},{(R1,K1),(R2,K1)

 ,(R1,K2),(R2,K2)}]
 guests : [{},{(R1,G1,T1),(R2,G1,T1),
 ...,(R1,G2,T2),(R2,G2,T2)}]
 g_keys : [{},{(G1,K1,T1),(G2,K1,T1),
 ...,(G1,K2,T2),(G2,K2,T2)}]
 ...

F = keys in Room -> Key &&
 guests in Room -> Guest -> Time &&
 g_keys in Guest -> Key -> Time &&
 all t:Time,r:Room | one r.r_keys.t &&
 all k:Key | one keys.k && ...

Explicit bounds

U = {R1,R2,K1,K2,G1,G2,T1,T2}

R = Room : [{},{R1,R2}]
 Key : [{K1,K2},{K1,K2}]
 Guest : [{},{G1,G2}]
 keys : [{},Room -> Key]
 Time : [{T1,T2},{T1,T2}]
 guests : [{},Room -> Guest -> Time]
 g_keys : [{},Guest -> Key -> Time]
 ...

F = all t:Time,r:Room | one r.r_keys.t &&
 all k:Key | one keys.k && …

Symbolic bounds

Decomposed Solving

● Given a set of variables denoting the partial problem, slice the constraint into
those formulas relevant for those variables

● Find a partial solution from this problem, and integrate it into the remainder
problem bounds

○ Resolve the symbolic bounds of the remainder variables

○ Solve the integrated problem, whose solutions extend the partial solution

○ If UNSAT, find another partial solution and repeat the process

● If the partial problem is UNSAT, then the whole problem is UNSAT

Decomposed Solving

● Can be naturally encoded using Kodkod, as these partial solutions can be
integrated in the bounds of the remaining variables

● Not every partial solution may lead to a complete solution, so potentially each
one must be analyzed

○ Also relevant for solution iteration

● Efficient iteration of non-symmetric solutions renders the process feasible

Decomposed Solving

Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)},
 {(R1,K1),(R1,K2)}]

Partial solution

Room : [{},{R1,R2}]
Key : [{K1,K2},{K1,K2}]
Guest : [{},{G1,G2}]
keys : [{},Room -> Key]
Time : [{T1,T2},{T1,T2}]
guests : [{},Room -> Guest -> Time]
g_keys : [{},Guest -> Key -> Time]
...

Symbolic bounds

Decomposed Solving

Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)},
 {(R1,K1),(R1,K2)}]

Partial solution

Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)}
 ,{(R1,K1),(R1,K2)}]
Time : [{T1,T2},{T1,T2}]
guests : [{},{(R1,G1,T1),(R1,G1,T2)}]
g_keys : [{},{(G1,K1,T1),(G1,K1,T1)
 ,(G1,K2,T2),(G1,K2,T2)}]
...

Integrated bounds

Implementation Details

● The general strategy exposed above is clearly prone to be parallelized on the
analysis of the independent integrated problems

● The procedure is still sound and complete

○ The order of the solutions is more unpredictable, which is not necessarily negative

● UNSAT problems with a large number of partial solutions may predictably be
much less efficient

● A hybrid approach was implemented, where the amalgamated problem runs
in parallel for the worst-case scenario

● The implementation was carefully planned to preserve the soundness of the
symmetry detection and predicate generation

Decomposition Criteria

● The variable decomposition can be provided by the user, who has domain
knowledge

● Nonetheless, several automated decomposition criteria were tested

● We found out that a sensible criterion can be calculated from the
dependency graph entailed by the symbolic bounds

● Roughly, relations with a higher outdegree in the dependency graph should
be left for the second stage of solving

○ Intuitively, relations with more dependencies benefit more from prior solving

Evaluation

Evaluation Summary

● The decomposed strategy regularly outperforms sequential “amalgamated”
model finding, and the hybrid technique balances out losses

○ For SAT, the decomposed strategy commonly outperforms the amalgamated
procedure (up to 2 orders of magnitude)

○ For UNSAT, the hybrid approach balances out the losses (slowdowns never below
0.5)

● The strategy is “competitive” with state-of-the-art parallel SAT solvers

○ These are not incremental and thus cannot (efficiently) iterate solutions

Evaluation: Red-black tree

Red-black tree example, tree generation (SAT) and property checking (UNSAT)

Evaluation: Hotel

Hotel room locking system example, with counter-examples (SAT) and corrected
(UNSAT)

Conclusions

● Symbolic partial knowledge to enhance model finding

○ Decomposition criteria

○ Decomposed solving strategy

○ Tighter search space

● Fully automated process, preserves symmetry breaking and solution iteration

● Parallel implementation, efficient for SAT problems and balanced for UNSAT

● Working on extracting symbolic knowledge from higher-level specification
languages

