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Model Finding

e Model finders automatically generate models within a bounded search space
that satisfy a certain constraint

e Increasingly useful for model verification and validation on early software
design stages

e Can be used directly by the end user

e But are typically at the backend of other frameworks with higher-level
specification languages

e Effective due to the advancement of the underlying solvers



Kodkod

e Kodkod is relational model finder (Torlak & Jackson, 2007)

e In Kodkod a model finding problem is represented by:
o A universe of atoms
o A set of relations restricted by bounds
m Atom tuples that must and may belong
o A relational formula that must hold
e A solution is a binding for each relational variable

e Problems are solved by off-the-shelf SAT solvers

e [Efficient iteration of instances/counter-examples through incremental SAT
solving



Model Finding Scenario

All relations and constraints are solved in an “amalgamated” manner
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Lower bounds define partial instances, upper bounds (usually) typing restrictions



Model Finding Scenario

Solving assigns a concrete set of elements to each relation
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Every (non-symmetric) solution can be inspected



Model Finding Scenario

Solving assigns a concrete set of elements to each relation
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Exploiting Partial Knowledge

e Bounds allow users to express partial knowledge that could not be otherwise
passed to the solvers

o Can refer to concrete atoms

e These have proven to largely improve the performance of model finding, as
they restrict the search space

e However, certain knowledge cannot be specified in bounds and must
encoded in the constraint

o Namely, relationships between the various relations

e This work explores this idea through the support for symbolic bounds



Model Finding Scenario Revisited

Symbolic bounds entail a dependency of Bon A and C
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The constraint can be simplified



Model Finding Scenario Revisited

The problem can be decomposed based on the detected dependencies
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Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds
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The search space for B is tighter



Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds
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The search space for B is tighter



Model Finding Scenario Revisited

Not every partial solution leads to a complete solution
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May potentially need to analyse every candidate



Decomposed Model Finding



Symbolic Bounds

e Regular bounds cannot encode such relationships: they refer only to concrete
atom tuples

e \We extend model finding to support symbolic bounds, arbitrary relational
expressions that may refer to other relations

o Can be evaluated efficiently

e If dependencies are constant, the bounds become tighter and the constraint
may be removed from the problem

e Reduces the complexity of constraints

e More importantly, it can be exploited in a decomposed solving strategy



Symbolic Bounds

{R1,R2,K1,K2,G1,G2,T1,T2}

Time [{T1,T2},{T1,T2}]
Key [{K1,K2}, {K1,K2}]
Room : [{},{R1,R2}]
[({},{G1,G2}]
[({},{(R1,K1), (R2,K1)
, (R1,K2), (R2,K2) }]

guests : [{},{(R1,G1,T1), (R2,G1,T1

Guest
keys

]

)

, (R1,G2,T2), (R2,G2,T2)
g keys : [{},{(G1,K1,T1l), (G2,K1,Tl),
..., (G1,K2,T2), (G2,K2,T2) }]

keys in Room -> Key &&

guests in Room -> Guest -> Time &&

g keys in Guest -> Key -> Time &&

all t:Time,r:Room | one r.r keys.t &&
all k:Key | one keys.k &&

Explicit bounds

{R1,R2,K1,K2,G1,G2,T1l, T2}

Room {},{R1,R2}]
Key {K1,K2}, {K1,K2}]
Guest {}, {G1l,G2}]

[
[
[
keys : [{},Room -> Key]
[
[
[

Time {T1,T2},{T1,T2}]
guests {},Room -> Guest -> Time]
g keys {},Guest -> Key -> Time]

all t:Time,r:Room | one r.r keys.t &&
all k:Key | one keys.k && ..

Symbolic bounds



Decomposed Solving

e Given a set of variables denoting the partial problem, slice the constraint into
those formulas relevant for those variables

e Find a partial solution from this problem, and integrate it into the remainder
problem bounds

o Resolve the symbolic bounds of the remainder variables
o Solve the integrated problem, whose solutions extend the partial solution

o If UNSAT, find another partial solution and repeat the process

e If the partial problem is UNSAT, then the whole problem is UNSAT



Decomposed Solving

e Can be naturally encoded using Kodkod, as these partial solutions can be
integrated in the bounds of the remaining variables

e Not every partial solution may lead to a complete solution, so potentially each
one must be analyzed

o Also relevant for solution iteration

e [Efficient iteration of non-symmetric solutions renders the process feasible



Decomposed Solving

Room [{R1}, {R1}] Room [{},{R1,R2}]
Key [{K1,K2}, {K1,K2}] Key [{K1,K2}, {K1,K2}]
Guest [{G1l}, {G1l}] Guest [{}, {G1l,G2}]
keys [{(R1,K1), (R1,K2)}, keys : [{},Room -> Key]
{(R1,K1), (R1,K2) }] Time [({T1,T2},{T1,T2}]
guests [{},Room -> Guest -> Time]
g keys [{},Guest -> Key -> Time]

Partial solution Symbolic bounds



Decomposed Solving

Room [{R1}, {R1}] Room [{R1}, {R1}]
Key [{K1,K2},{K1,K2}] Key [{K1,K2},{K1l,K2}]
Guest [{G1l}, {G1l}] Guest [{G1l}, {G1l}]
keys [{(R1,K1), (R1,K2)}, keys [{(R1,K1), (R1,K2)}
{(R1,K1), (R1,K2) }] ; {(R1,K1), (R1,K2) }]
Time {(T1,T2},{T1,T2}]

2o
guests : [{},{(R1,G1,T1), (R1,G1,T2)}]
[{},{(G1,K1,T1), (G1,K1,T1l)
, (G1,K2,T2), (G1,K2,T2) }]

g keys

Partial solution Integrated bounds



Implementation Detalls

e The general strategy exposed above is clearly prone to be parallelized on the
analysis of the independent integrated problems

e The procedure is still sound and complete
o The order of the solutions is more unpredictable, which is not necessarily negative

e UNSAT problems with a large number of partial solutions may predictably be
much less efficient

e A hybrid approach was implemented, where the amalgamated problem runs
in parallel for the worst-case scenario

e The implementation was carefully planned to preserve the soundness of the
symmetry detection and predicate generation



Decomposition Criteria

e The variable decomposition can be provided by the user, who has domain
knowledge

e Nonetheless, several automated decomposition criteria were tested

e We found out that a sensible criterion can be calculated from the
dependency graph entailed by the symbolic bounds

e Roughly, relations with a higher outdegree in the dependency graph should
be left for the second stage of solving

o Intuitively, relations with more dependencies benefit more from prior solving



Evaluation



Evaluation Summary

e The decomposed strategy regularly outperforms sequential “amalgamated”
model finding, and the hybrid technique balances out losses

o For SAT, the decomposed strategy commonly outperforms the amalgamated
procedure (up to 2 orders of magnitude)

o For UNSAT, the hybrid approach balances out the losses (slowdowns never below
0.5)

e The strategy is “competitive” with state-of-the-art parallel SAT solvers

o These are not incremental and thus cannot (efficiently) iterate solutions



Evaluation: Red-black tree

Red-black tree example, tree generation (SAT) and property checking (UNSAT)
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Evaluation: Hotel

Hotel room locking system example, with counter-examples (SAT) and corrected

(UNSAT)
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Conclusions

e Symbolic partial knowledge to enhance model finding
o Decomposition criteria
o Decomposed solving strategy
o Tighter search space
e Fully automated process, preserves symmetry breaking and solution iteration

e Parallel implementation, efficient for SAT problems and balanced for UNSAT

e \Working on extracting symbolic knowledge from higher-level specification
languages



