Exploiting Partial Knowledge
for Efficient Model Analysis

Nuno Macedo Alcino Cunha Eduardo Pessoa
Universidade do Minho & INESC TEC, Portugal

ATVA 2017, Pune, India

Model Finding

e Model finders automatically generate models within a bounded search space
that satisfy a certain constraint

e Increasingly useful for model verification and validation on early software
design stages

e Can be used directly by the end user

e But are typically at the backend of other frameworks with higher-level
specification languages

e Effective due to the advancement of the underlying solvers

Kodkod

e Kodkod is relational model finder (Torlak & Jackson, 2007)

e In Kodkod a model finding problem is represented by:
o A universe of atoms
o A set of relations restricted by bounds
m Atom tuples that must and may belong
o A relational formula that must hold
e A solution is a binding for each relational variable

e Problems are solved by off-the-shelf SAT solvers

e [Efficient iteration of instances/counter-examples through incremental SAT
solving

Model Finding Scenario

All relations and constraints are solved in an “amalgamated” manner

A B C

- " - "
- b 7 N
El h ’ -
. -
L ~ . N
. AS - !
. n » 5
¢ LY ¢ Al
¥ A9 x A8
¥ kY ¥ A
¢ L] P L}
i 1 P]
i Ll ¥ L]
I i 1 i
1] i [
1 i 1 1
1] 1 [
l]]] i
| 1 1 i 1 i
1 i]]]]
1) L]] L] P
] P 1 i 1 d
1 L Al r L r
1 i i ¥ 4 ¥
L]) L]) A1 ¢
1] ¥ A ’ A9 L
A # L] i Al 4
Al & Al ¥, % o+
4 ; % ra . #
w & LY , w ,
% # u & -.. &
“ £ b # b #
LS - ~ - b -
u - B - B -
- - - - - -
e e e o= e e

Lower bounds define partial instances, upper bounds (usually) typing restrictions

Model Finding Scenario

Solving assigns a concrete set of elements to each relation

A B C

‘@ . L) . @ . ,
A8
L]
]
L]
i
i
I I i
]] I
i] i
I] I i '| I
1) L]]] P
1) L] P L] T
i T 1 I 1 d
il [] P L] P
1 i i P L] ¥
| . ; | . | ‘ . |
A . . . A .
. ! L] i+ Al ¥,
Al . Al , Al i+
* e A - * #
' . ’ ' . ’ ' . ’
% & % & -.. -
Y ’ b # b #
\\“ I‘_H, ‘\-“ I‘_H, ‘\\." “.ff
e =T Il e

¢p=ACBCCAY

Every (non-symmetric) solution can be inspected

Model Finding Scenario

Solving assigns a concrete set of elements to each relation

A B C

JJJJJ

¢p=ACBCCAY

Every (non-symmetric) solution can be inspected

Exploiting Partial Knowledge

e Bounds allow users to express partial knowledge that could not be otherwise
passed to the solvers

o Can refer to concrete atoms

e These have proven to largely improve the performance of model finding, as
they restrict the search space

e However, certain knowledge cannot be specified in bounds and must
encoded in the constraint

o Namely, relationships between the various relations

e This work explores this idea through the support for symbolic bounds

Model Finding Scenario Revisited

Symbolic bounds entail a dependency of Bon A and C
A i °
o . - O .“‘ Q@
0 O 0 O ' 0 @®

® pomll proell =
M PULEAY LAY N
| @ . | @

1 '|

i .

. 1.]
] % ¥
w \ ® ’

\ . \ . \ . :

. ..- w i #
Y r A Al e
b # bl f bl L
- - 'L - L -
kY - kY - . -

The constraint can be simplified

Model Finding Scenario Revisited

The problem can be decomposed based on the detected dependencies

A B C

- -
’ - =
—— # N
Wz . -
/ 1 — ~
Flas % -
I. g I 5 “ B
- 4 1 | - %
= 5 J . .
— ' \
— i \
i Y — r A
{ \ i .
| / i]
L [} [
B, i i
1 f]
e h | 1 1
*— i \ M _."l |
1 1 |) .] i
\ . Clower upper !
|
1 1 \ A — \ [}
[r Ty g b v 1
i r — | | L '
1] # 9 4 N]
) ¢ | | B 4 ¥
%] \ ; . ¥
W ; Pt e v ¥
* ¥ i N . ’
£y r | N\ rl
£ - L' ¥ - i
% F Sy % ¢
N # " a
u - - -
- - - -
o= Il

Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds

1 . .
' . Iawer Upper
1
L]
5 \
1 1 '|
ks ks
Al
Al '\ \.
w r A A
' " Al bl
L] & L] f % f
H". ai, \". ai, \'a .ﬁ',
Smaae=" e A
gb = Tﬂ

The search space for B is tighter

Model Finding Scenario Revisited

Each solution of the partial problem restricts B by resolving the symbolic bounds

A B C

aaaaaaaaaa

L4
= -
. N . 5
- - - -
& ™ P -
. A F A
El N, E 1)
¥ L i A
¥ 1. L &
T ! A
[II L]
r . . II .
f
. |. . .
% J
1 ¢
%]
w x
% % ¥ %
A A F "
* * E A
. "'\. -~ b
n o . # % e
bl El £l el £l #
~ Ed ~ Ed _‘ -
.“"1‘ ‘.li“ "H_‘ ‘-l’ - J_--l".

The search space for B is tighter

Model Finding Scenario Revisited

Not every partial solution leads to a complete solution

N — v

i 1 [) ' \
' [\ ' \
1 | o \ | 1
1] S, i i
I i |' [1 i
N N o \]] |
1 r"_ f B M _b'l |
1 I i |) 1 1
' . ' lower upper [

|

1 I \] e l 1
] r S Fi Y [¥

5 P — | | L]]

\ ’ # oo 1 '
v r | — 5 '
kl i ! 4 b &
b ’ i # i b &
* #F r \u b &
w E (| " -
w - !) kY #
", A 8 P
. ~

p =1

May potentially need to analyse every candidate

Decomposed Model Finding

Symbolic Bounds

e Regular bounds cannot encode such relationships: they refer only to concrete
atom tuples

e \We extend model finding to support symbolic bounds, arbitrary relational
expressions that may refer to other relations

o Can be evaluated efficiently

e If dependencies are constant, the bounds become tighter and the constraint
may be removed from the problem

e Reduces the complexity of constraints

e More importantly, it can be exploited in a decomposed solving strategy

Symbolic Bounds

{R1,R2,K1,K2,G1,G2,T1,T2}

Time [{T1,T2},{T1,T2}]
Key [{K1,K2}, {K1,K2}]
Room : [{},{R1,R2}]
[({},{G1,G2}]
[({},{(R1,K1), (R2,K1)
, (R1,K2), (R2,K2) }]

guests : [{},{(R1,G1,T1), (R2,G1,T1

Guest
keys

]

)

, (R1,G2,T2), (R2,G2,T2)
g keys : [{},{(G1,K1,T1l), (G2,K1,Tl),
..., (G1,K2,T2), (G2,K2,T2) }]

keys in Room -> Key &&

guests in Room -> Guest -> Time &&

g keys in Guest -> Key -> Time &&

all t:Time,r:Room | one r.r keys.t &&
all k:Key | one keys.k &&

Explicit bounds

{R1,R2,K1,K2,G1,G2,T1l, T2}

Room {},{R1,R2}]
Key {K1,K2}, {K1,K2}]
Guest {}, {G1l,G2}]

[
[
[
keys : [{},Room -> Key]
[
[
[

Time {T1,T2},{T1,T2}]
guests {},Room -> Guest -> Time]
g keys {},Guest -> Key -> Time]

all t:Time,r:Room | one r.r keys.t &&
all k:Key | one keys.k && ..

Symbolic bounds

Decomposed Solving

e Given a set of variables denoting the partial problem, slice the constraint into
those formulas relevant for those variables

e Find a partial solution from this problem, and integrate it into the remainder
problem bounds

o Resolve the symbolic bounds of the remainder variables
o Solve the integrated problem, whose solutions extend the partial solution

o If UNSAT, find another partial solution and repeat the process

e If the partial problem is UNSAT, then the whole problem is UNSAT

Decomposed Solving

e Can be naturally encoded using Kodkod, as these partial solutions can be
integrated in the bounds of the remaining variables

e Not every partial solution may lead to a complete solution, so potentially each
one must be analyzed

o Also relevant for solution iteration

e [Efficient iteration of non-symmetric solutions renders the process feasible

Decomposed Solving

Room [{R1}, {R1}] Room [{},{R1,R2}]
Key [{K1,K2}, {K1,K2}] Key [{K1,K2}, {K1,K2}]
Guest [{G1l}, {G1l}] Guest [{}, {G1l,G2}]
keys [{(R1,K1), (R1,K2)}, keys : [{},Room -> Key]
{(R1,K1), (R1,K2) }] Time [({T1,T2},{T1,T2}]
guests [{},Room -> Guest -> Time]
g keys [{},Guest -> Key -> Time]

Partial solution Symbolic bounds

Decomposed Solving

Room [{R1}, {R1}] Room [{R1}, {R1}]
Key [{K1,K2},{K1,K2}] Key [{K1,K2},{K1l,K2}]
Guest [{G1l}, {G1l}] Guest [{G1l}, {G1l}]
keys [{(R1,K1), (R1,K2)}, keys [{(R1,K1), (R1,K2)}
{(R1,K1), (R1,K2) }] ; {(R1,K1), (R1,K2) }]
Time {(T1,T2},{T1,T2}]

2o
guests : [{},{(R1,G1,T1), (R1,G1,T2)}]
[{},{(G1,K1,T1), (G1,K1,T1l)
, (G1,K2,T2), (G1,K2,T2) }]

g keys

Partial solution Integrated bounds

Implementation Detalls

e The general strategy exposed above is clearly prone to be parallelized on the
analysis of the independent integrated problems

e The procedure is still sound and complete
o The order of the solutions is more unpredictable, which is not necessarily negative

e UNSAT problems with a large number of partial solutions may predictably be
much less efficient

e A hybrid approach was implemented, where the amalgamated problem runs
in parallel for the worst-case scenario

e The implementation was carefully planned to preserve the soundness of the
symmetry detection and predicate generation

Decomposition Criteria

e The variable decomposition can be provided by the user, who has domain
knowledge

e Nonetheless, several automated decomposition criteria were tested

e We found out that a sensible criterion can be calculated from the
dependency graph entailed by the symbolic bounds

e Roughly, relations with a higher outdegree in the dependency graph should
be left for the second stage of solving

o Intuitively, relations with more dependencies benefit more from prior solving

Evaluation

Evaluation Summary

e The decomposed strategy regularly outperforms sequential “amalgamated”
model finding, and the hybrid technique balances out losses

o For SAT, the decomposed strategy commonly outperforms the amalgamated
procedure (up to 2 orders of magnitude)

o For UNSAT, the hybrid approach balances out the losses (slowdowns never below
0.5)

e The strategy is “competitive” with state-of-the-art parallel SAT solvers

o These are not incremental and thus cannot (efficiently) iterate solutions

Evaluation: Red-black tree

Red-black tree example, tree generation (SAT) and property checking (UNSAT)

t(s)

1000

100

0.1

p#

pS

—8— Ama 8 Par —&— Hyb

—— Syr

100000

10000

1000

t(s

1000

100

10

0.1

p#

ps

—&— Ama —#— Par —& Hybh —# Syr

100000

10000

1000

Evaluation: Hotel

Hotel room locking system example, with counter-examples (SAT) and corrected

(UNSAT)

p# pS @ Ama 8 Par —&— Hybh —#— Syr
1000
a— @
100 - .,/ ¢ I
G + B
p .

100000

10000

1000

100

10

B2

t(s)

1000

100

p#

pS

—8— Ama

—&— Par —&— Hyb

—— Syr

100000

10000

1000

100

10

1

Conclusions

e Symbolic partial knowledge to enhance model finding
o Decomposition criteria
o Decomposed solving strategy
o Tighter search space
e Fully automated process, preserves symmetry breaking and solution iteration

e Parallel implementation, efficient for SAT problems and balanced for UNSAT

e \Working on extracting symbolic knowledge from higher-level specification
languages

