Variability Analysis for Robot
Operating System Applications

André Santos’, Alcino Cunha?*, Nuno Macedo?*, Sara Melo?
and Ricardo Pereira?

"WVORTEX ColLab, ?Universidade do Minho, 3Universidade do Porto, *INESC TEC,
Portugal

Motivation: Variability in Robotics

e Modern robotic applications are rarely made from scratch

e Reusable third-party components are configured for a
purpose and integrated into a single system

e Many configuration points: component configuration,
component integration, mission-specific parameters, etc.

e Enabled by middlewares such as ROS

e How can developers manage this variability?

>50 launch files
100s of possible
configurations

Which are valid?
What is their impact?

/

Software Product Lines

e Popular approach in the software engineering community
e Family of products seen as a single artifact with variability points

e Requires domain engineering activities
o Domain analysis: which features exist and what is their relationship?
o Domain design: what is the variability-aware design of the system?

o Domain implementation: how is variability resolved to obtain a product?

e Most popular approach is feature-oriented
o Afeature model determines existing features and valid configurations
o Implementation of features may be annotative or compositional

Contributions

(Vp
O Launch [B Node
D: :

: Files Nid <> Code |
e Preliminary study to identify how oo o *
variability is implemented in ROS apps | :

Multiple
CGs

.) Feature H f Varlatlonal
e Technique to extract feature modelsand QO Model mEmE (I
variational architectures o l
> i Feature Mod€l
1

e Interpretation of ROS applications as
SPLs

e Tool to interact with these artifacts and aid R (=) < computation Graph l @)

. - - @ turtlebot_bringup/launchi/concert_minimal.launch X & }:opics [len(self.publis s) > 1] { 3
In prOd uct co nfl g u ratlon [X X] () turtlebot_bringup/launch/minimallaunch (v) ! et u U
o e () arg:base v ,—*.‘ g oy b

oo) kobuki v w @ > = ' O O O

create X SEiiSToes = - 4 "

() roomba X ; 3

O arg:3d_sensor v

ROS in a Nutshell

e ROS package: node source code + launch files

e ROS application: has an associated runtime computation graph

o Running nodes
o Communication channels

o Parameters

e Determined by the selected set of launch files and their arguments

Study on Variability in ROS

e \We consider a particular product/application a
concrete CG

e A feature is configuration point of launch process
that affects the CG

e \We do not consider variability in node behaviour
e Several popular open-source ROS robots analyzed

e \We found both compositional (preferred) and
annotative strategies

Turtlebot2

!@5

Lizi

Husky

Strategies to Implement Variability in ROS

Compositional: Annotative:
e multiple launch files for each functionality e conditional behaviour inside launch files
e to launch an application, select a subset e arguments used in conditional blocks
e names of other launch files to include
e topic names in remaps
<launch>
<node name="n” type="A" .../>
</launch> <launch>
<arg name="x"/>
<node name="n" type="A” ... if="$(arg x)”/>
<launch> <node name="n" type="B” ... unless="$(arg x)”/>
<node name="n” type="B” .../> </launch>

</launch>

ROS Feature Models

e The selection of a launch file is a feature e Assigning a value to a CG-affecting
e Dependencies: launch files including arguments is a feature
others e Dependencies: assigning an argument
e Conflicts: launching nodes with same requires its launch file
name e Optional: if there is a default value
e XOR-group: possible values of an
argument

o

ROS SPL Example: Feature Model

<launch>
<arg name="tele” default="True”/>
<include file=“tele.launch” if="$(arg tele)”/>
<node name="base” type="base” .../>

</launch>

simple. Llaunch

<launch> base. Launch
<arg name="cmode” default="teleop.launch”/>
<arg name="vtopic” default="vel cmd”/>
<include file=“$(arg cmode)”/>
<node name="base” type="base” ...>
<remap from="vel” to="$(arg vtopic)”/>
</node>
</launch>

<launch>
<node name="tele” type="teleop” ...
</launch>

teleop. Launch

/>

<launch> random. Launch
<node name="random” type="random” ..

</launch>

>

(root)

App

" (launch)
simple
l echLEJdes
(launch) requires (argy (launch) (IaEnch)
............... ...
teleop tele base random
A /\
érequires <ar5> Gfg) L
: cmode vtopic requires :
_ {value) {value) {value) {value)
teleop || random || vel_cmd || Svtopic

ROS Variational CGs

e Each element of the CG is assigned a presence condition

e Proposition whose variables are features from the feature model

o ifa node is launched by a.launch, condition is the respective feature

e Similar elements are merged and their conditions simplified

o ifanode is launched by a.launch and b.launch, condition is their disjunction

o nodes always present eventually have presence condition true

ROS SPL Example: Variational CG

<launch>
<arg name="tele” default="True”/>
<include file=“tele.launch” if="$(arg tele)”/>
<node name="base” type="base” .../>

</launch>

simple. Llaunch

<launch> base. Launch
<arg name="cmode” default="teleop.launch”/>
<arg name="vtopic” default="vel cmd”/>
<include file=“$(arg cmode)”/>
<node name="base” type="base” ...>
<remap from="vel” to="$(arg vtopic)”/>
</node>
</launch>

<launch>
<node name="tele” type="teleop” .../>
</launch>

teleop. Launch

<launch> random. Launch
<node name="random” type="random” .../>

</launch>

simpleV
: teleopV L7 s
:basercmodertele - baservtopic»$vtopic:

randomV :
base»cmoderrandomV :
base»vtopic»vel_cmd :

simplertelevV : :
| teleopV i . base>cmode»random
:base»cmoderteleop:

ROS Feature Model Extraction

e Processes launch files

e Identifies CG-affecting arguments
o conditionals, included files, remap names, node attributes

e Identifies possible values of CG-affecting arguments
o identifies Boolean values
o if path to file, identifies acceptable string values
o other strings left as user-provided value
o considers default values

e Identifies incompatible launch files
o nodes with the same name
o may be conditional on passed arguments

ROS Variational CG creation

e Builds on previous work extracting CG from ROS applications

o static source code analysis of node code

e Elements whose presence could not be determined statically are optional

e These are now attached presence conditions, identified when extracting the
Feature Model

HAROS

e Analysis engine for ROS applications
e Static analysis over ROS source code
e Model extraction from code and launch files

e Plug-ins run analyses over code and extracted models

o Pattern matching

00
o Runtime verification C R H ‘7 R O S
000

o Automated test generation

https://github.com/qit-afsantos/haros

HAROS SPL Plug-in

e SPL extraction technique in the
backend

e Depicts the extracted feature model
and variational CG

e Multi-step configuration: feature
dependencies and CG iteratively
resolved

e Once CG is fully resolved, provides
the respective launch command

HAROSviz I
a5 Feature Model \703 Compute Hz\ £} Computation Graph |E\ \E\ \E
) example v

K ! fictibot_launchl../base.launch (v)
() arg:cmode
) arg:vtopic v
() vel_cmd X
) vtopic (*) v
) fictibot_launch/.../random.launch
() fictibot_launchl.../simple.launch

) fictibot_launch/...teleop.launch

roslaunch example base.launch

/rér;dz)fp @ ENE]

i
Aelmﬂd('l’ "I'

cmode:=tele vtopic:=vtopic

Evaluation: Launch Features

e Applied our SPL extraction technique to 4 realistic robots

System Launch Files C:nlivg?t,i?ole Incﬁ:lv::f;ble Incgnmazgfible
Kobuki 21 4 17 0
TurtleBot2 53 15 36 2
Liz 14 2 12 0

Husky 137 37 98 2

Evaluation: Argument Features

e Applied our SPL extraction technique to 4 realistic robots

Svstem Arauments CG-affecting Non-Bool Non-Bool Conditional Maximum
y g Arguments | CG-affecting | Computed Blocks Occurrences
Kobuki 18 0 0 0 0 0
TurtleBot2 195 23 19 5 6 2
Lizi 66 12 1 0 20 4

Husky 391 82 40 12 57 4

Evaluation: Kobuki

HAROSviz

&3 Feature Model \63 Compute || i | % Computation Graph |E\ |§} |§\

kobuki v
=
kobuki_auto_docking/.../activate.launch 7 “:1 O A '=‘"

kobuki_auto_docking/.../auto_dock_with_safe_keyop.launt
kobuki_auto_docking/.../compact.launch
kobuki_auto_docking/.../minimal.launch 4‘ 4
kobuki_auto_docking/../standalone.launch Loe-eesssfifiiiiAStRORLIAN U fsea.. T
kobuki_bumper2pc/.../standalone.launch
kobuki_capabilities/.../app_manager_with_capabilities.lau

kobuki_capabilities/.../kobuki_bringup.launch

Evaluation: Lizi

HAROSviz ” .

& Feature Model 4 Compute || i | % Computation Graph (2] [a\ (o]

O iz

. Y lizitaunch/lizilaunch (v) ‘ L™
) arg:gazebo v s ,=~ L=~

() false X 's_," O O ‘_,\’ '_,
O U v v |
= 7@ @
() true ¥ e s /\
O $0) x = @ O a0
arg:world v '\ e ; G C

) worlds/empty.world

Evaluation

e Does the execution time of the technique scale for realistic ROS systems?

o We did not find any performance bottlenecks

e How effective is the technique in automatically extracting feature models?
o Total precision, but not complete in detecting valid argument values
o Tool allows manual definition of values during configuration
e How complex are the SPLs of realistic ROS systems?
o Several conflicting launch files that the user may not be aware of
o Alot of CG-affecting arguments without documentation,

o An argument often affects multiple points

Conclusions

e \Variability is pervasive in ROS, with different implementation strategies
e Interpretation of ROS applications as SPL.: feature model + variational CG
e \We propose a technique to extract such SPLs and integrate it in HAROS

e Evaluation shows features cause conflicts and affect CG in multiple points

e Continue to tackle limitations of the underlying CG extraction (ROS2, Python)

e Extend existing analysis for the variational context (analyse whole SPL)

