
Variability Analysis for Robot
Operating System Applications
André Santos1, Alcino Cunha24, Nuno Macedo34, Sara Melo2

and Ricardo Pereira2

1VORTEX CoLab, 2Universidade do Minho, 3Universidade do Porto, 4INESC TEC,
Portugal

Motivation: Variability in Robotics

● Modern robotic applications are rarely made from scratch

● Reusable third-party components are configured for a
purpose and integrated into a single system

● Many configuration points: component configuration,
component integration, mission-specific parameters, etc.

● Enabled by middlewares such as ROS

● How can developers manage this variability?

● >50 launch files
● 100s of possible

configurations
● Which are valid?
● What is their impact?

Software Product Lines

● Popular approach in the software engineering community

● Family of products seen as a single artifact with variability points

● Requires domain engineering activities
○ Domain analysis: which features exist and what is their relationship?

○ Domain design: what is the variability-aware design of the system?

○ Domain implementation: how is variability resolved to obtain a product?

● Most popular approach is feature-oriented
○ A feature model determines existing features and valid configurations
○ Implementation of features may be annotative or compositional

Contributions

● Preliminary study to identify how
variability is implemented in ROS apps

● Interpretation of ROS applications as
SPLs

● Technique to extract feature models and
variational architectures

● Tool to interact with these artifacts and aid
in product configuration

Feature
Model

Variational
CG

Multiple
CGs

Launch
Files

Node
Code

● ROS package: node source code + launch files

● ROS application: has an associated runtime computation graph

○ Running nodes

○ Communication channels

○ Parameters

● Determined by the selected set of launch files and their arguments

ROS in a Nutshell

Study on Variability in ROS

● We consider a particular product/application a
concrete CG

● A feature is configuration point of launch process
that affects the CG

● We do not consider variability in node behaviour

● Several popular open-source ROS robots analyzed

● We found both compositional (preferred) and
annotative strategies

Turtlebot2

Lizi

Husky

Strategies to Implement Variability in ROS

Compositional:
● multiple launch files for each functionality
● to launch an application, select a subset

Annotative:
● conditional behaviour inside launch files
● arguments used in conditional blocks
● names of other launch files to include
● topic names in remaps

<launch>
 <node name=”n” type=”A” …/>
</launch>

<launch>
 <node name=”n” type=”B” …/>
</launch>

<launch>
 <arg name=”x”/>
 <node name=”n” type=”A” … if=”$(arg x)”/>
 <node name=”n” type=”B” … unless=”$(arg x)”/>
</launch>

ROS Feature Models

● The selection of a launch file is a feature
● Dependencies: launch files including

others
● Conflicts: launching nodes with same

name

● Assigning a value to a CG-affecting
arguments is a feature

● Dependencies: assigning an argument
requires its launch file

● Optional: if there is a default value
● XOR-group: possible values of an

argument

ROS SPL Example: Feature Model

<launch> simple.launch
 <arg name=”tele” default=”True”/>
 <include file=“tele.launch” if=”$(arg tele)”/>
 <node name=”base” type=”base” …/>
</launch>

<launch> base.launch
 <arg name=”cmode” default=”teleop.launch”/>
 <arg name=”vtopic” default=”vel_cmd”/>
 <include file=“$(arg cmode)”/>
 <node name=”base” type=”base” …>
 <remap from=”vel” to=”$(arg vtopic)”/>
 </node>
</launch>

<launch> teleop.launch
 <node name=”tele” type=”teleop” …/>
</launch>

<launch> random.launch
 <node name=”random” type=”random” …/>
</launch>

〈launch〉

teleop

〈arg〉

cmode

〈value〉

teleop
〈value〉

random

〈arg〉

vtopic

〈value〉

vel_cmd
〈value〉

$vtopic

〈launch〉

base

〈launch〉

simple

〈arg〉

tele

〈root〉

App

excludes

requires

〈launch〉

random

requires

requires

ROS Variational CGs

● Each element of the CG is assigned a presence condition

● Proposition whose variables are features from the feature model

○ if a node is launched by a.launch, condition is the respective feature

● Similar elements are merged and their conditions simplified
○ if a node is launched by a.launch and b.launch, condition is their disjunction

○ nodes always present eventually have presence condition true

ROS SPL Example: Variational CG

<launch> simple.launch
 <arg name=”tele” default=”True”/>
 <include file=“tele.launch” if=”$(arg tele)”/>
 <node name=”base” type=”base” …/>
</launch>

<launch> base.launch
 <arg name=”cmode” default=”teleop.launch”/>
 <arg name=”vtopic” default=”vel_cmd”/>
 <include file=“$(arg cmode)”/>
 <node name=”base” type=”base” …>
 <remap from=”vel” to=”$(arg vtopic)”/>
 </node>
</launch>

<launch> teleop.launch
 <node name=”tele” type=”teleop” …/>
</launch>

<launch> random.launch
 <node name=”random” type=”random” …/>
</launch>

base

vel

random

simple⋁
teleop⋁

base▸cmode▸teleop

random⋁
base▸cmode▸random

simple⋁
base

$vtopic

base▸vtopic▸$vtopic

vel_cmd

tele

random⋁
base▸cmode▸random⋁
base▸vtopic▸vel_cmd

simple▸tele⋁
teleop⋁

base▸cmode▸teleop

ROS Feature Model Extraction

● Processes launch files

● Identifies CG-affecting arguments
○ conditionals, included files, remap names, node attributes

● Identifies possible values of CG-affecting arguments
○ identifies Boolean values
○ if path to file, identifies acceptable string values
○ other strings left as user-provided value
○ considers default values

● Identifies incompatible launch files
○ nodes with the same name
○ may be conditional on passed arguments

ROS Variational CG creation

● Builds on previous work extracting CG from ROS applications
○ static source code analysis of node code

● Elements whose presence could not be determined statically are optional

● These are now attached presence conditions, identified when extracting the
Feature Model

HAROS

● Analysis engine for ROS applications

● Static analysis over ROS source code

● Model extraction from code and launch files

● Plug-ins run analyses over code and extracted models

○ Pattern matching

○ Runtime verification

○ Automated test generation

https://github.com/git-afsantos/haros

● SPL extraction technique in the
backend

● Depicts the extracted feature model
and variational CG

● Multi-step configuration: feature
dependencies and CG iteratively
resolved

● Once CG is fully resolved, provides
the respective launch command

HAROS SPL Plug-in

roslaunch example base.launch cmode:=tele vtopic:=vtopic

Evaluation: Launch Features

● Applied our SPL extraction technique to 4 realistic robots

System Launch Files Always
Compatible

Always
Incompatible

Maybe
Incompatible

Kobuki 21 4 17 0

TurtleBot2 53 15 36 2

Lizi 14 2 12 0

Husky 137 37 98 2

Evaluation: Argument Features

● Applied our SPL extraction technique to 4 realistic robots

System Arguments CG-affecting
Arguments

Non-Bool
CG-affecting

Non-Bool
Computed

Conditional
Blocks

Maximum
Occurrences

Kobuki 18 0 0 0 0 0

TurtleBot2 195 23 19 5 6 2

Lizi 66 12 1 0 20 4

Husky 391 82 40 12 57 4

Evaluation: Kobuki

Evaluation: Lizi

Evaluation

● Does the execution time of the technique scale for realistic ROS systems?
○ We did not find any performance bottlenecks

● How effective is the technique in automatically extracting feature models?
○ Total precision, but not complete in detecting valid argument values

○ Tool allows manual definition of values during configuration

● How complex are the SPLs of realistic ROS systems?
○ Several conflicting launch files that the user may not be aware of

○ A lot of CG-affecting arguments without documentation,

○ An argument often affects multiple points

Conclusions

● Variability is pervasive in ROS, with different implementation strategies

● Interpretation of ROS applications as SPL: feature model + variational CG

● We propose a technique to extract such SPLs and integrate it in HAROS

● Evaluation shows features cause conflicts and affect CG in multiple points

● Continue to tackle limitations of the underlying CG extraction (ROS2, Python)

● Extend existing analysis for the variational context (analyse whole SPL)

