
Verification of Railway Network Models with EVEREST

J. Martins1, J. Fonseca1, R. Costa2, J. Campos23, A. Cunha23, N. Macedo24, J. Oliveira23

1Efacec, 2INESC TEC, 3U. Minho, 4U. Porto, Portugal

Efacec

Transportation Energy Environment

• Portuguese Company

• Approximately 2000 Employees

• Founded in 1948

Transportation – Signalling Products

IMAGEM 1

IMAGEM 2

• Turn-key products

• Develops and integrates technology to deliver the
best product

• Multidisciplinary engineering teams

• Long history in signalling systems

• References around the world

Railway Signalling System Design

• The design of railway signalling systems
is performed by multi-disciplinary teams

• Different expertise

• Different views of the system

• Accustomed to different tools

• Must be verified against regulations

• Requires info from different views

• Rules vary from project/market
(© omada Rail Systems)

Railway Signalling System Design

Signalling
Designer

Technical
Designer

Verification
Manager

Railway Design Tool (RaIL-AiD)

Violations
Report

Regulations

Technical Drawing Tool (AutoCAD)

Railway Signalling System Design

• Phases of the process still manual and error prone

• Where technical designers add the signalling information manually

• Verification considers signalling and physical information

• Verification manager validates infrastructure rules manually

• Main goals

• How to automatically synchronize information in a consistent network model?

• How to formalize and automate the verification of imposed regulation?

Railway Signalling System Design

Signalling
Designer

Technical
Designer

Railway Design Tool (RaIL-AiD) Technical Drawing Tool (AutoCAD)

Verification
Manager

Regulations

Design Verification Tool (EVEREST)

Rule
Catalog

Violations
Report

railML

Violations
Report

EVEREST - Efacec Verification of Railway Networks Tool

• EVEREST is a design verification tool for
railway network models

• Preserves the loosely coupled nature of
the workflow

• Coalesces the information in a common
exchange format (railML)

• Provides a specification language for
infrastructure rules

• Automates the verification of such rules

EVEREST Overview

• An EVEREST project is a set of railML models

• The Rule Designer supports writing and
maintaining a catalog of rules

• The Infrastructure Verifier automatically
verifies rules selected for the project

• Violations can be seen in the Network
Visualizer

• The AutoCAD Plug-in imports signalling data
and exports physical data

EVEREST Rule Designer

• Supports writing of rules (syntax
checker, type checker)

• Collects and organizes rules in a
catalog shared by all projects

• Provides basic versioning
functionalities

• Supports expression macros to tame
verbosity of railML

EVEREST Rule Language

• Provides a formal specification language for
infrastructure rules over network models

• Language based on relational logic of Alloy

• Eases navigation over railML elements

• Semantics based on metric interval linear
temporal logic

• Temporal modalities adapted to spatial
context

route ::

everywhere (some signalIS implies

everywhere [0..20] no switchIS)

Along a route, there's a minimum distance of 20 meters
between every signal and a switch.

EVEREST Infrastructure Verifier

• Automates the verification of rules

• Rules relevant for each project selected
from the catalog

• Found violations reported in the
EVEREST Visualizer and the AutoCAD
drawing

EVEREST Network Visualizer

• Provides a visualization of the network
model

• Allows the visualization of the found
violations

• Network elements involved in violations
are highlighted

EVEREST AutoCAD Plug-in

• Imports signalling diagram to kickstart
positioning process

• Supports the automatic partitioning of
physical track into network elements

• Exports physical information about elements

• Imports back found rule violations for
inspection

EVEREST Evaluation

• Performance:

• Time spent evaluating the rules is negligible for real projects

• Expressiveness:

• Able to support most classes of properties encountered so far

• Usability:

• Needs further studies (initial feedback from designers positive)

• Engineers welcome the formalization and documentation of rules

EVEREST Expressiveness: Existence of Elements

track :: everywhere (all s : signalIS |

isVirtual.refersTo.ref.s implies

some exitSignal.refersTo.ref.s)

All virtual signals must be the exit signal of some route.

EVEREST Expressiveness: Order of Elements

track :: some border implies

everywhere (some switchIS implies

somewhere]..0[some trainDetectionElement)

The first switch after entering an area must be preceded by a train
detection element.

EVEREST Expressiveness: Distance between Elements

route :: everywhere (some signalIS implies

everywhere [0..50]

no switchIS & facingSwitches.refersTo.ref)

There's a minimum distance of 50 meters between every signal
and a facing switch.

EVEREST Expressiveness: Element Coverage

track :: everywhere (all t : trainDetectionElement |

#(hasDemarcatingTraindetector.ref.t) = 1 implies

((somewhere [0..[some border) and

(everywhere]0..[no trainDetectionElement) or

(somewhere]..0] some border) and

(everywhere]..0[no trainDetectionElement)))

Only the last and first train detection devices in an area demarcate
exactly one TVD section.
(Part of forcing every track to be correctly covered by TVD sections.)

Conclusion

• We propose a workflow backed by a toolset for the verification of railway networks

• Automates the flow of information between teams

• Supports the formalization of infrastructure regulation

• Automates the verification of such properties

• Future work

• Further empirical studies at EFACEC regarding usability and expressiveness

• Verify interlocking properties, model checking needed

• Use automatic model repair to suggest fixes to violations

Thank You!

