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Efacec

Transportation Energy Environment

• Portuguese Company

• Approximately 2000 Employees

• Founded in 1948



Transportation – Signalling Products

IMAGEM 1

IMAGEM 2

• Turn-key products

• Develops and integrates technology to deliver the 
best product

• Multidisciplinary engineering teams

• Long history in signalling systems

• References around the world



Railway Signalling System Design

• The design of railway signalling systems 
is performed by multi-disciplinary teams

• Different expertise 

• Different views of the system

• Accustomed to different tools

• Must be verified against regulations

• Requires info from different views

• Rules vary from project/market
(© omada Rail Systems)
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Railway Signalling System Design

• Phases of the process still manual and error prone

• Where technical designers add the signalling information manually

• Verification considers signalling and physical information

• Verification manager validates infrastructure rules manually

• Main goals

• How to automatically synchronize information in a consistent network model?

• How to formalize and automate the verification of imposed regulation?
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EVEREST - Efacec Verification of Railway Networks Tool

• EVEREST is a design verification tool for 
railway network models

• Preserves the loosely coupled nature of 
the workflow

• Coalesces the information in a common 
exchange format (railML)

• Provides a specification language for 
infrastructure rules

• Automates the verification of such rules



EVEREST Overview

• An EVEREST project is a set of railML models

• The Rule Designer supports writing and 
maintaining a catalog of rules

• The Infrastructure Verifier automatically 
verifies rules selected for the project

• Violations can be seen in the Network 
Visualizer

• The AutoCAD Plug-in imports signalling data 
and exports physical data



EVEREST Rule Designer

• Supports writing of rules (syntax 
checker, type checker)

• Collects and organizes rules in a 
catalog shared by all projects

• Provides basic versioning 
functionalities

• Supports expression macros to tame 
verbosity of railML



EVEREST Rule Language

• Provides a formal specification language for 
infrastructure rules over network models

• Language based on relational logic of Alloy

• Eases navigation over railML elements

• Semantics based on metric interval linear 
temporal logic

• Temporal modalities adapted to spatial 
context

route :: 

everywhere (some signalIS implies

everywhere [0..20] no switchIS)

Along a route, there's a minimum distance of 20 meters 
between every signal and a switch.



EVEREST Infrastructure Verifier

• Automates the verification of rules

• Rules relevant for each project selected 
from the catalog

• Found violations reported in the 
EVEREST Visualizer and the AutoCAD 
drawing



EVEREST Network Visualizer

• Provides a visualization of the network 
model

• Allows the visualization of the found 
violations

• Network elements involved in violations 
are highlighted



EVEREST AutoCAD Plug-in

• Imports signalling diagram to kickstart 
positioning process

• Supports the automatic partitioning of 
physical track into network elements

• Exports physical information about elements

• Imports back found rule violations for 
inspection



EVEREST Evaluation

• Performance: 

• Time spent evaluating the rules is negligible for real projects

• Expressiveness: 

• Able to support most classes of properties encountered so far

• Usability: 

• Needs further studies (initial feedback from designers positive)

• Engineers welcome the formalization and documentation of rules



EVEREST Expressiveness: Existence of Elements

track :: everywhere (all s : signalIS |

isVirtual.refersTo.ref.s implies

some exitSignal.refersTo.ref.s)

All virtual signals must be the exit signal of some route.



EVEREST Expressiveness: Order of Elements

track :: some border implies

everywhere (some switchIS implies

somewhere ]..0[ some trainDetectionElement)

The first switch after entering an area must be preceded by a train 
detection element.



EVEREST Expressiveness: Distance between Elements

route :: everywhere (some signalIS implies

everywhere [0..50] 

no switchIS & facingSwitches.refersTo.ref)

There's a minimum distance of 50 meters between every signal 
and a facing switch.



EVEREST Expressiveness: Element Coverage

track :: everywhere (all t : trainDetectionElement |

#(hasDemarcatingTraindetector.ref.t) = 1 implies

((somewhere [0..[ some border) and

(everywhere ]0..[ no trainDetectionElement) or

(somewhere ]..0] some border) and

(everywhere ]..0[ no trainDetectionElement)))

Only the last and first train detection devices in an area demarcate 
exactly one TVD section.
(Part of forcing every track to be correctly covered by TVD sections.)



Conclusion

• We propose a workflow backed by a toolset for the verification of railway networks

• Automates the flow of information between teams

• Supports the formalization of infrastructure regulation

• Automates the verification of such properties

• Future work

• Further empirical studies at EFACEC regarding usability and expressiveness

• Verify interlocking properties, model checking needed

• Use automatic model repair to suggest fixes to violations



Thank You!


