Empowering the future.

Verification of Railway Network Models with EVEREST

J. Martins¹, J. Fonseca¹, R. Costa², J. Campos²³, A. Cunha²³, N. Macedo²⁴, J. Oliveira²³ ¹Efacec, ²INESC TEC, ³U. Minho, ⁴U. Porto, Portugal

Efacec

- Portuguese Company \bullet
- Approximately 2000 Employees ullet
- Founded in 1948 ۲

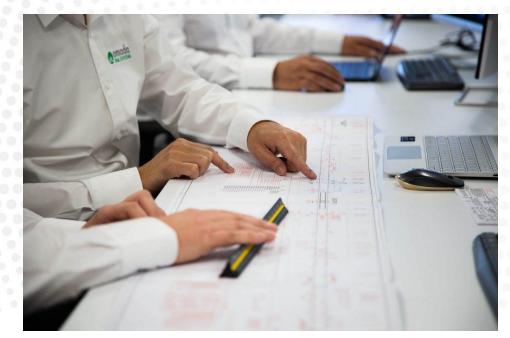
Fundo Europeu

Transportation – Signalling Products

- Turn-key products
- Develops and integrates technology to deliver the best product
- Multidisciplinary engineering teams
- Long history in signalling systems
- References around the world

XSafe

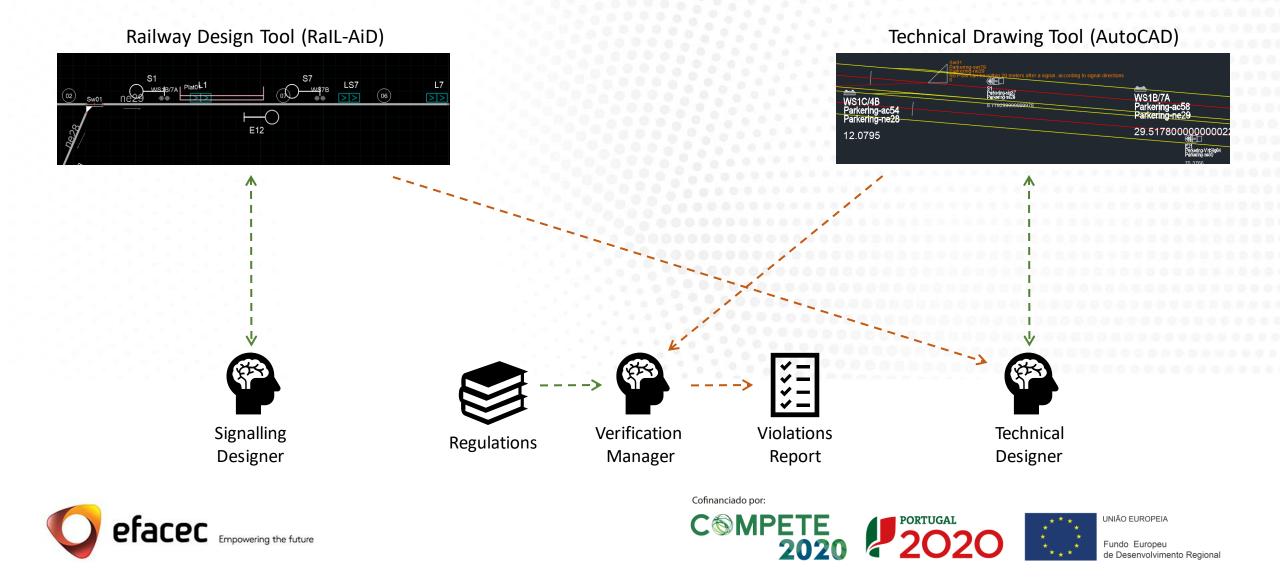
Cofinanciado por:



UNIÃO EUROPEIA

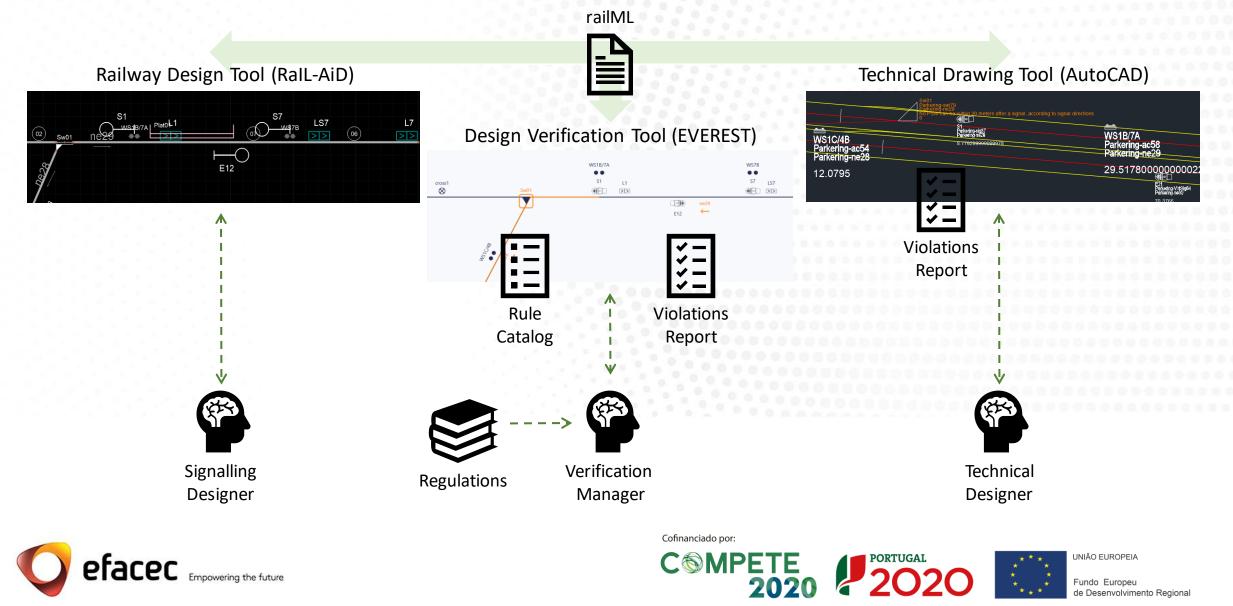
Fundo Europeu de Desenvolvimento Regiona

- The **design** of railway signalling systems is performed by multi-disciplinary teams
 - Different expertise
 - Different views of the system
 - Accustomed to different tools
- Must be **verified** against regulations
 - Requires info from different views
 - Rules vary from project/market



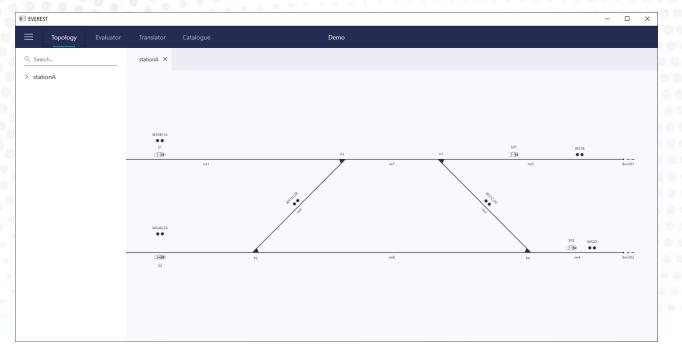
(© omada Rail Systems)

Cofinanciado por:


- Phases of the process still manual and error prone •
 - Where technical designers add the signalling information manually
 - Verification considers signalling and physical information
 - Verification manager validates infrastructure rules manually
- Main goals ٠
 - How to automatically synchronize information in a consistent network model?

Cofinanciado por:

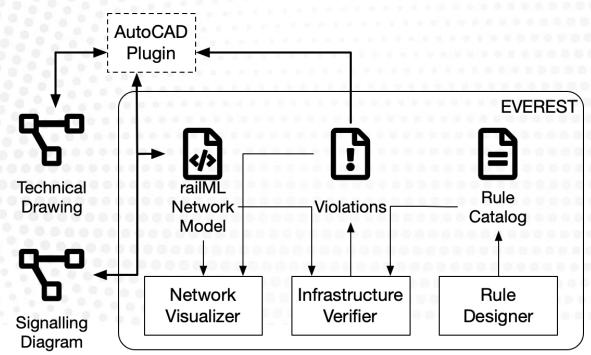
How to formalize and automate the verification of imposed regulation?



C MPETE

EVEREST - Efacec Verification of Railway Networks Tool

- EVEREST is a design verification tool for railway network models
- Preserves the loosely coupled nature of the workflow
- Coalesces the information in a common exchange format (railML)
- Provides a specification language for infrastructure rules
- Automates the verification of such rules



Cofinanciado por:

EVEREST Overview

- An EVEREST project is a set of railML models
- The Rule Designer supports writing and maintaining a catalog of rules
- The Infrastructure Verifier automatically verifies rules selected for the project
- Violations can be seen in the **Network** Visualizer
- The AutoCAD Plug-in imports signalling data and exports physical data

Cofinanciado por:

EVEREST Rule Designer

- Supports writing of rules (syntax checker, type checker)
- Collects and organizes rules in a catalog shared by all projects
- Provides basic versioning functionalities
- Supports expression macros to tame verbosity of railML

Cofinanciado por:

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

EVEREST Rule Language

- Provides a formal specification language for infrastructure rules over network models
- Language based on relational logic of Alloy •
 - Eases navigation over railML elements
- Semantics based on metric interval linear temporal logic
 - Temporal modalities adapted to spatial context

Along a route, there's a minimum distance of 20 meters between every signal and a switch.

route

everywhere (some signalIS implies everywhere [0..20] no switchIS)

Cofinanciado por:

EVEREST Infrastructure Verifier

- Automates the verification of rules
- Rules relevant for each project selected from the catalog
- Found violations reported in the EVEREST Visualizer and the AutoCAD drawing

REST							- 0	×
Topology	Evaluator Tran	nslator Catalogue	Demo					
	Infrastructu	re Rules <u>Q Search</u>			Eval All	Update All		
	Name	Specification	Description	State	Version Name	Version Status		
	All non vitual signa	<pre>track::all s:signalIL (not s.isVirtual) implie</pre>	s s All Non Vitual Signals are Route Entry Signals	Invalid	Version 7	UpToDate		
	All vitual signals ar	track::all s:signalIL s.isVirtual implies some	ro All Non Vitual Signals are Route Entry Signals	Valid	Version 1	UpToDate		
	At most one signal	track::everywhere lone signalIS	Only one signal per Track	Valid	Version 1	UpToDate		
	At most one balise	track::everywhere lone balise	Only one balise per location	Valid	Version 1	UpToDate		
	At most one train	<pre>track::everywhere lone trainDetectionElement</pre>	Only one trainDetectionElement per location	Valid	Version 1	UpToDate		
	No other elements	<pre>track::everywhere (some switchIS implies no (si</pre>	gna No elements can be same location of switches	Valid	Version 1	UpToDate		
	No switches befor	track :: some border implies (everywhere (some	swi No Points in area which is not signalized	Valid	Version 1	UpToDate		
	No facing switches	<pre>track :: everywhere (some border implies ((ever</pre>	ywh No Points before an Entry Signal starting from bor	Invalid	Version 7	UpToDate		
	Some train detecto	<pre>track::everywhere (some (refersTo.ref.signalIS</pre>	\ i A train detector must be less that 1 meter from a si	Invalid	Version 14	UpToDate		

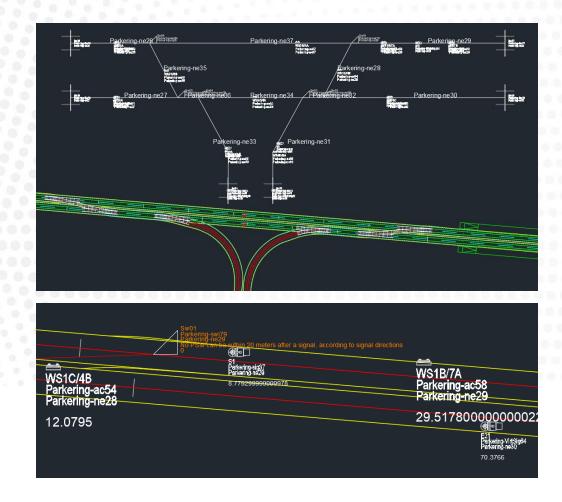
Cofinanciado por:

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regiona

EVEREST Network Visualizer

- Provides a visualization of the network model
- Allows the visualization of the found violations
- Network elements involved in violations ٠ are highlighted



EVEREST AutoCAD Plug-in

- Imports signalling diagram to kickstart ulletpositioning process
- Supports the automatic partitioning of physical track into network elements
- Exports physical information about elements
- Imports back found rule violations for ulletinspection

Cofinanciado por:

EVEREST Evaluation

- Performance:
 - Time spent evaluating the rules is negligible for real projects
- Expressiveness:
 - Able to support most classes of properties encountered so far
- Usability:
 - Needs further studies (initial feedback from designers positive)
 - Engineers welcome the formalization and documentation of rules

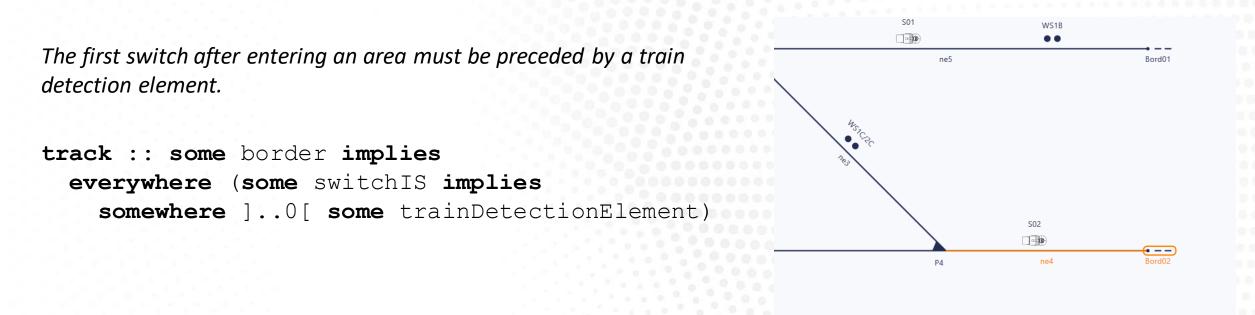
Cofinanciado por:

UNIÃO EUROPEIA

EVEREST Expressiveness: Existence of Elements

All virtual signals must be the exit signal of some route.

track :: everywhere (all s : signalIS isVirtual.refersTo.ref.s implies some exitSignal.refersTo.ref.s)

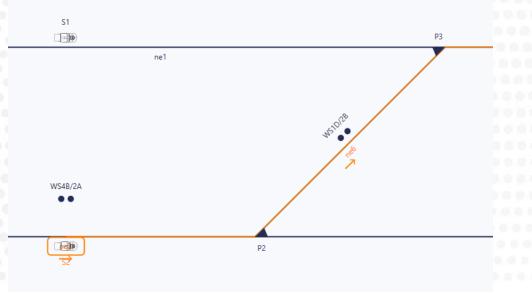


Cofinanciado por:

JNIÃO EUROPEIA

EVEREST Expressiveness: Order of Elements

Cofinanciado por:

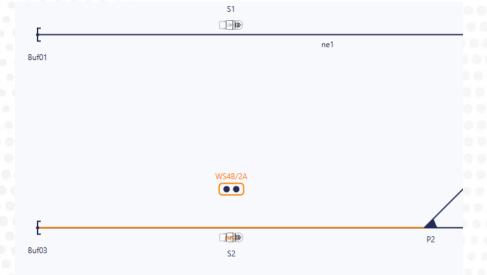

JNIÃO EUROPEIA

Fundo Europ

EVEREST Expressiveness: Distance between Elements

There's a minimum distance of 50 meters between every signal and a facing switch.

```
route :: everywhere (some signalIS implies
everywhere [0..50]
 no switchIS & facingSwitches.refersTo.ref)
```



Cofinanciado por:

JNIÃO EUROPEIA

EVEREST Expressiveness: Element Coverage

Only the last and first train detection devices in an area demarcate exactly one TVD section. (Part of forcing every track to be correctly covered by TVD sections.) track :: everywhere (all t : trainDetectionElement #(hasDemarcatingTraindetector.ref.t) = 1 implies ((somewhere [0.. [some border) and (everywhere]0.. [no trainDetectionElement) or (somewhere]..0] some border) and (everywhere]..0[no trainDetectionElement))

Cofinanciado por:

NIÃO EUROPI

Conclusion

- We propose a workflow backed by a toolset for the verification of railway networks
 - Automates the flow of information between teams
 - Supports the formalization of infrastructure regulation
 - Automates the verification of such properties
- Future work
 - Further empirical studies at EFACEC regarding usability and expressiveness

Cofinanciado por:

- Verify interlocking properties, model checking needed
- Use automatic **model repair** to suggest fixes to violations

UNIAO EUROPEIA

Incink You.

